Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dose Response ; 22(1): 15593258231225914, 2024.
Article in English | MEDLINE | ID: mdl-38204760
2.
Med Phys ; 45(1): 391-401, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29131351

ABSTRACT

PURPOSE: To evaluate the effect on charge collection in the ionization chamber (IC) in proton pencil beam scanning (PBS), where the local dose rate may exceed the dose rates encountered in conventional MV therapy by up to three orders of magnitude. METHODS: We measured values of the ion recombination (ks ) and polarity (kpol ) correction factors in water, for a plane-parallel Markus TM23343 IC, using the cyclotron-based Proteus-235 therapy system with an active proton PBS of energies 30-230 MeV. Values of ks were determined from extrapolation of the saturation curve and the Two-Voltage Method (TVM), for planar fields. We compared our experimental results with those obtained from theoretical calculations. The PBS dose rates were estimated by combining direct IC measurements with results of simulations performed using the FLUKA MC code. Values of ks were also determined by the TVM for uniformly irradiated volumes over different ranges and modulation depths of the proton PBS, with or without range shifter. RESULTS: By measuring charge collection efficiency versus applied IC voltage, we confirmed that, with respect to ion recombination, our proton PBS represents a continuous beam. For a given chamber parameter, e.g., nominal voltage, the value of ks depends on the energy and the dose rate of the proton PBS, reaching c. 0.5% for the TVM, at the dose rate of 13.4 Gy/s. For uniformly irradiated regular volumes, the ks value was significantly smaller, within 0.2% or 0.3% for irradiations with or without range shifter, respectively. Within measurement uncertainty, the average value of kpol , for the Markus TM23343 IC, was close to unity over the whole investigated range of clinical proton beam energies. CONCLUSION: While no polarity effect was observed for the Markus TM23343 IC in our pencil scanning proton beam system, the effect of volume recombination cannot be ignored.


Subject(s)
Proton Therapy , Radiometry/methods , Computer Simulation , Cyclotrons , Monte Carlo Method , Proton Therapy/methods , Water
3.
Int J Hyperthermia ; 31(5): 568-73, 2015.
Article in English | MEDLINE | ID: mdl-25885417

ABSTRACT

PURPOSE: In this prospective preliminary study we evaluated changes of prostate volume and changes of brachytherapy treatment plan parameters due to interstitial hyperthermia (IHT) applied prior to high-dose-rate brachytherapy (HDRBT), compared to our standard HDRBT procedure. MATERIAL AND METHODS: In a group of 60 consecutive patients with prostate adenocarcinoma, 30 were treated with HDRBT alone and 30 with IHT preceding HDRBT. Prior to catheter implantation, a 'virtual' treatment plan (VP) was complied, a 'live' plan (LP) was prepared before patient irradiation, and a 'post' plan (PP) was drawn up after completing the irradiation procedure. In each plan, based on transrectal ultrasound images, the contours of the prostate, urethra, and rectum were delineated and the respective volumes and dose-volume histogram parameters were evaluated. These parameters, established for the LP, were then compared with those of the PP. RESULTS: Changes in prostate volume and in parameters of the treatment plans were observed, but differences between the two patient groups were not statistically significant. For all 60 patients treated, the average prostate volume in the VP was 32 cm(3), in the LP 41 cm(3), and the PP 43 cm(3). Average values of relative changes in the therapy planning parameters between LP and PP were for the prostate D90 -5.7%, V100 -5.6%, V200 -13.2%, for the urethra D0, 1 cm(3) -1.6%, and for rectum D2 cm(3) 0%. CONCLUSION: Hyperthermia prior to HDRBT does not significantly change the volume of the prostate and there is no need to perform the new treatment plan after the hyperthermia session.


Subject(s)
Prostate/pathology , Prostatic Neoplasms/radiotherapy , Brachytherapy/methods , Humans , Male , Microwaves , Prospective Studies , Prostatic Neoplasms/pathology , Radiometry , Radiotherapy Dosage
4.
J Radiat Res ; 43 Suppl: S59-62, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12793731

ABSTRACT

Lithium fluoride thermoluminescence (TL) detectors, with different Li composition (Li-6 and Li-7) and various activators (LiF:Mg,Ti, LiF:Mg,Cu,P), are widely used for dosimetry in space. The primary radiation field in space is composed of fast electrons, protons and heavy charged particles (HCP). By its interaction with the structures of the spacecraft, this field may be modified inside the crew cabin. Therefore, calibration of TL detectors against a dose of gamma-rays is not sufficient for relating the TL readout to absorbed dose or to quantities relevant in radiation protection, without suitable correction. We introduce and calculate the detection efficiency, eta, relative to gamma-ray dose, of lithium fluoride detectors after proton and heavy charged particle (HCP) irradiation. We calculate eta for MCP-N (LiF:Mg,Cu,P) and for MTS-N (LiF:Mg,Ti) using microdosimetric models. The microdosimetric distributions used in these models (for HCP of charges between Z=1 to Z=8 and in the energy range between 0.3 MeV/amu and 20 MeV/amu) are calculated using an analytical model, based on the results of Monte Carlo simulated charged particle tracks using the MOCA-14 code. The ratio etaMCP-N/etaMTS-N for protons of stopping power (in water) below 10 keV/microm lies in the range between 0.65 and 1.0 and for HCP with Z>1--between 0.3 and 0.6. The stopping power of the particle is found not to be a unique parameter to scale the response of TL detectors. The combination of response of LiF:Mg,Cu,P and LiF:Mg,Cu,P detectors can be more suitable for a dose correction in space radiation fields.


Subject(s)
Cosmic Radiation , Linear Energy Transfer , Models, Theoretical , Thermoluminescent Dosimetry , Computer Simulation , Extraterrestrial Environment , Monte Carlo Method , Thermoluminescent Dosimetry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...