Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dermatopathology (Basel) ; 6(2): 170-181, 2019.
Article in English | MEDLINE | ID: mdl-31700859

ABSTRACT

Traction alopecia (TA) is hair loss caused by prolonged pulling or repetitive tension on scalp hair; it belongs to the biphasic group of primary alopecia. It is non-scarring, typically with preservation of follicular stem cells and the potential for regrowth of early lesions especially if traction hairstyles are stopped. However, the alopecia may become permanent (scarring) and fail to respond to treatment if the traction is excessive and prolonged. Hence, the ability to detect fibrosis early in these lesions could predict patients who respond to treatment. Histopathological diagnosis based on scalp biopsies has been used as a gold standard to delineate various forms of non-scarring alopecia and to differentiate them from scarring ones. However, due to potential discrepant reporting as a result of the type of biopsy, method of sectioning, and site of biopsy, histopathology often tends to be unreliable for the early recognition of fibrosis in TA. In this study, 45 patients were assessed using the marginal TA severity scoring system, and their biopsies (both longitudinal and transverse sections) were systematically assessed by three dermatopathologists, the aim being to correlate histopathological findings with clinical staging. Intraclass correlation coefficients were used to determine the level of agreement between the assessors. We found poor agreement of the identification and grading of perifollicular and interfollicular fibrosis (0.55 [0.23-0.75] and 0.01 [2.20-0.41], respectively), and no correlation could be drawn with the clinical severity score. Better methods of diagnosis are needed for grading and for recognition of early fibrosis in TA.

2.
Curr Opin Chem Biol ; 27: 64-74, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26117808

ABSTRACT

Green fluorescent protein and related proteins carry chromophores formed within the protein from their own amino acids. Corresponding synthetic compounds are non-fluorescent in solution due to photoinduced isomerization of the benzylideneimidiazolidinone core. Restriction of this internal rotation by binding to host molecules leads to pronounced, up to three orders of magnitude, increase of fluorescence intensity. This property allows using GFP chromophore analogs as fluorogenic dyes to detect metal ions, proteins, nucleic acids, and other hosts. For example, RNA aptamer named Spinach, which binds to and activates fluorescence of some GFP chromophores, was proved to be a unique label for live-cell imaging of specific RNAs, endogenous metabolites and target proteins. Chemically locked GFP chromophores are brightly fluorescent and represent potentially useful dyes due to their small size and high water solubility.


Subject(s)
Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Molecular Imaging/methods , Green Fluorescent Proteins/genetics , Molecular Structure , Photochemistry , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...