Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0305490, 2024.
Article in English | MEDLINE | ID: mdl-38875295

ABSTRACT

Ewing sarcoma is the second most common bone cancer in children, and while patients who present with metastatic disease at the time of diagnosis have a dismal prognosis. Ewing sarcoma tumors are driven by the fusion gene EWS/Fli1, and while these tumors are genetically homogenous, the transcriptional heterogeneity can lead to a variety of cellular processes including metastasis. In this study, we demonstrate that in Ewing sarcoma cells, the canonical Wnt/ß-Catenin signaling pathway is heterogeneously activated in vitro and in vivo, correlating with hypoxia and EWS/Fli1 activity. Ewing sarcoma cells predominantly express ß-Catenin on the cell membrane bound to CDH11, which can respond to exogenous Wnt ligands leading to the immediate activation of Wnt/ß-Catenin signaling within a tumor. Knockdown of CDH11 leads to delayed and decreased response to exogenous Wnt ligand stimulation, and ultimately decreased metastatic propensity. Our findings strongly indicate that CDH11 is a key component of regulating Wnt//ß-Catenin signaling heterogeneity within Ewing sarcoma tumors, and is a promising molecular target to alter Wnt//ß-Catenin signaling in Ewing sarcoma patients.


Subject(s)
Cadherins , Sarcoma, Ewing , Wnt Signaling Pathway , beta Catenin , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Sarcoma, Ewing/genetics , Humans , Cadherins/metabolism , Cadherins/genetics , Cell Line, Tumor , beta Catenin/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Mice , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/metabolism , RNA-Binding Protein EWS/genetics
2.
bioRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38293103

ABSTRACT

Ewing sarcoma is the second most common bone cancer in children, accounting for 2% of pediatric cancer diagnoses. Patients who present with metastatic disease at the time of diagnosis have a dismal prognosis, compared to the >70% 5-year survival of those with localized disease. Here, we utilized single cell RNA-sequencing to characterize the transcriptional landscape of primary Ewing sarcoma tumors and surrounding tumor microenvironment (TME). Copy-number analysis identified subclonal evolution within patients prior to treatment. Primary tumor samples demonstrate a heterogenous transcriptional landscape with several conserved gene expression programs, including those composed of genes related to proliferation and EWS targets. Single cell RNA-sequencing and immunofluorescence of circulating tumor cells at the time of diagnosis identified TSPAN8 as a novel therapeutic target.

3.
J Neuroimmunol ; 347: 577319, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32717427

ABSTRACT

Oligoclonal bands and increased IgG antibody levels can be detected in the cerebrospinal fluid in vast majority of patients with Multiple Sclerosis (MS). However, the antigenic specificity of oligoclonal IgG has yet to be determined. Using laser capture microdissection, we isolated single CD38+ plasma cells from lesion areas in two autopsy MS brains, and generated three recombinant antibodies (rAbs) from clonally expanded plasma cells. Panning phage-displayed random peptide libraries was carried out to determine peptide antigen specificities of these MS brain rAbs. We identified 25 high affinity phage peptides from which 5 peptides are unique. Database searches revealed that they shared sequence homologies with Epstein-Barr nuclear antigens 4 and 6, as well as with other viral proteins. Significantly, these peptides were recognized by intrathecal IgG and oligoclonal IgG bands in other MS patients. Our results demonstrate that functional recombinant antibodies can be generated from clonally expanded plasma cells in MS brain lesions by laser capture microdissection, and that these MS brain rAbs have the potential for determining the targets of intrathecal IgG and oligoclonal bands.


Subject(s)
Bacteriophages/metabolism , Brain/metabolism , Immunoglobulin G/metabolism , Laser Capture Microdissection/methods , Multiple Sclerosis/metabolism , Peptide Fragments/metabolism , Plasma Cells/metabolism , Amino Acid Sequence , Bacteriophages/genetics , Humans , Immunoglobulin G/genetics , Injections, Spinal , Multiple Sclerosis/diagnosis , Multiple Sclerosis/genetics , Peptide Fragments/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Oncoimmunology ; 7(5): e1423182, 2018.
Article in English | MEDLINE | ID: mdl-29721380

ABSTRACT

Lung-specific overexpression of prostacyclin synthase (PGIS) decreases tumor initiation in murine lung cancer models. Prostacyclin analogs prevent lung tumor formation in mice and reverse bronchial dysplasia in former smokers. However, the effect of prostacyclin on lung cancer progression has not been well studied. We investigated the effects of pulmonary PGIS overexpression in an orthotopic immunocompetent mouse model of lung cancer using two murine lung cancer cell lines. Pulmonary PGIS overexpression significantly inhibited CMT167 lung tumor growth, increased CXCL9 expression, and increased CD4+ tumor-infiltrating lymphocytes. Immunodepletion of CD4+ T cells abolished the inhibitory effect of pulmonary PGIS overexpression on CMT167 lung tumor growth. In contrast, pulmonary PGIS overexpression failed to inhibit growth of a second murine lung cancer cell line, Lewis Lung Carcinoma (LLC) cells, and failed to increase CXCL9 expression or CD4+ T lymphocytes in LLC lung tumors. Transcriptome profiling of CMT167 cells and LLC cells recovered from tumor-bearing mice demonstrated that in vivo, CMT167 cells but not LLC cells express MHC class II genes and cofactors necessary for MHC class II processing and presentation. These data demonstrate that prostacyclin can inhibit lung cancer progression and suggest that prostacyclin analogs may serve as novel immunomodulatory agents in a subset of lung cancer patients. Moreover, expression of MHC Class II by lung cancer cells may represent a biomarker for response to prostacyclin.

5.
PLoS One ; 8(11): e79633, 2013.
Article in English | MEDLINE | ID: mdl-24244531

ABSTRACT

Eicosanoids are bioactive lipid mediators derived from arachidonic acid(1) (AA), which is released by cytosolic phospholipase A2 (cPLA2). AA is metabolized through three major pathways, cyclooxygenase (COX), lipoxygenase (LO) and cytochrome P450, to produce a family of eicosanoids, which individually have been shown to have pro- or anti-tumorigenic activities in cancer. However, cancer progression likely depends on complex changes in multiple eicosanoids produced by cancer cells and by tumor microenvironment and a systematic examination of the spectrum of eicosanoids in cancer has not been performed. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) to quantitate eicosanoids produced during lung tumor progression in an orthotopic immunocompetent mouse model of lung cancer, in which Lewis lung carcinoma (LLC) cells are injected into lungs of syngeneic mice. The presence of tumor increased products of both the cyclooxygenase and the lipoxygenase pathways in a time-dependent fashion. Comparing tumors grown in cPLA2 knockout vs wild-type mice, we demonstrated that prostaglandins (PGE2, PGD2 and PGF2a) were produced by both cancer cells and the tumor microenvironment (TME), but leukotriene (LTB4, LTC4, LTD4, LTE4) production required cPLA2 expression in the TME. Using flow cytometry, we recovered tumor-associated neutrophils and 2 types of tumor-associated macrophages from tumor-bearing lungs and we defined their distinct eicosanoid profiles by LC/MS/MS. The combination of flow cytometry and LC/MS/MS unravels the complexity of eicosanoid production in lung cancer and provides a rationale to develop therapeutic strategies that target select cell populations to inhibit specific classes of eicosanoids.


Subject(s)
Eicosanoids/metabolism , Leukotrienes/metabolism , Lung Neoplasms/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Gene Deletion , Group IV Phospholipases A2/genetics , Humans , Inflammation/metabolism , Inflammation/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Metabolic Networks and Pathways , Metabolomics/methods , Mice , Mice, Knockout , Tumor Microenvironment/genetics
6.
Am J Physiol Lung Cell Mol Physiol ; 299(6): L735-48, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20709730

ABSTRACT

To determine the separate and interactive effects of fetal inflammation and neonatal hyperoxia on the developing lung, we hypothesized that: 1) antenatal endotoxin (ETX) causes sustained abnormalities of infant lung structure; and 2) postnatal hyperoxia augments the adverse effects of antenatal ETX on infant lung growth. Escherichia coli ETX or saline (SA) was injected into amniotic sacs in pregnant Sprague-Dawley rats at 20 days of gestation. Pups were delivered 2 days later and raised in room air (RA) or moderate hyperoxia (O2, 80% O2 at Denver's altitude, ∼65% O2 at sea level) from birth through 14 days of age. Heart and lung tissues were harvested for measurements. Intra-amniotic ETX caused right ventricular hypertrophy (RVH) and decreased lung vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein contents at birth. In ETX-exposed rats (ETX-RA), alveolarization and vessel density were decreased, pulmonary vascular wall thickness percentage was increased, and RVH was persistent throughout the study period compared with controls (SA-RA). After antenatal ETX, moderate hyperoxia increased lung VEGF and VEGFR-2 protein contents in ETX-O2 rats and improved their alveolar and vascular structure and RVH compared with ETX-RA rats. In contrast, severe hyperoxia (≥95% O2 at Denver's altitude) further reduced lung vessel density after intra-amniotic ETX exposure. We conclude that intra-amniotic ETX induces fetal pulmonary hypertension and causes persistent abnormalities of lung structure with sustained pulmonary hypertension in infant rats. Moreover, moderate postnatal hyperoxia after antenatal ETX restores lung growth and prevents pulmonary hypertension during infancy.


Subject(s)
Animals, Newborn , Endotoxins/pharmacology , Fetus/drug effects , Hyperoxia , Hypertension, Pulmonary/chemically induced , Lung/drug effects , Lung/growth & development , Animals , Female , Fetus/anatomy & histology , Gestational Age , Humans , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/chemically induced , Infant , Lung/anatomy & histology , Lung/physiopathology , Oxygen/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...