Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Curr Oncol ; 30(6): 5195-5200, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37366877

ABSTRACT

(1) Background: The objective of this analysis was to evaluate the device usage rates and patterns of use regarding Tumor-Treating Fields (TTFields) for patients with malignant pleural mesothelioma (MPM) throughout the US. (2) Methods: We evaluated de-identified data from 33 patients with MPM enrolled in FDA-required HDE protocols at 14 institutions across the US from September 2019 to March 2022. (3) Results: The median number of total TTFields usage days was 72 (range: 6-649 days), and the total treatment duration was 160 months for all patients. A low usage rate (defined as less than 6 h per day, 25%) was observed in 34 (21.2%) months. The median TTFields usage in the first 3 months was 12 h per day (range: 1.9-21.6 h), representing 50% (range: 8-90%) of the potential daily duration. The median TTFields usage after 3 months decreased to 9.1 h per day (range: 3.1-17 h), representing 38% (range: 13-71%) of the daily duration, and was lower than usage in the first 3 months (p = 0.01). (4) Conclusions: This study represents the first multicenter analysis of real-world TTFields usage based on usage patterns for MPM patients in clinical practice. The real-world usage level was lower than the suggested daily usage. Further initiatives and guidelines should be developed to evaluate the impact of this finding on tumor control.


Subject(s)
Mesothelioma, Malignant , Neoplasms , Humans
2.
Cancers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37190184

ABSTRACT

In breast cancer, progression to invasive ductal carcinoma (IDC) involves interactions between immune, myoepithelial, and tumor cells. Development of IDC can proceed through ductal carcinoma in situ (DCIS), a non-obligate, non-invasive stage, or IDC can develop without evidence of DCIS and these cases associate with poorer prognosis. Tractable, immune-competent mouse models are needed to help delineate distinct mechanisms of local tumor cell invasion and prognostic implications. To address these gaps, we delivered murine mammary carcinoma cell lines directly into the main mammary lactiferous duct of immune-competent mice. Using two strains of immune-competent mice (BALB/c, C57BL/6), one immune-compromised (severe combined immunodeficiency; SCID) C57BL/6 strain, and six different murine mammary cancer cell lines (D2.OR, D2A1, 4T1, EMT6, EO771, Py230), we found early loss of ductal myoepithelial cell differentiation markers p63, α-smooth muscle actin, and calponin, and rapid formation of IDC in the absence of DCIS. Rapid IDC formation also occurred in the absence of adaptive immunity. Combined, these studies demonstrate that loss of myoepithelial barrier function does not require an intact immune system, and suggest that these isogenic murine models may prove a useful tool to study IDC in the absence of a non-obligatory DCIS stage-an under-investigated subset of poor prognostic human breast cancer.

3.
Article in English | MEDLINE | ID: mdl-36308008

ABSTRACT

Radioenhancing nanoparticles (NPs) are being evaluated in ongoing clinical trials for various cancers including head and neck, lung, esophagus, pancreas, prostate, and soft tissue sarcoma. Supported by decades of preclinical investigation and recent randomized trial data establishing clinical activity, these agents are poised to influence future multimodality treatment paradigms involving radiotherapy. Although the physical interactions between NPs and ionizing radiation are well characterized, less is known about how these agents modify the tumor microenvironment, particularly regarding tumor immunogenicity. In this review, we describe the key multidisciplinary considerations related to radiation, surgery, immunology, and pathology for designing radioenhancing NP clinical trials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Subject(s)
Nanoparticles , Neoplasms , Male , Humans , Nanomedicine , Neoplasms/radiotherapy , Neoplasms/drug therapy , Lung , Nanoparticles/therapeutic use , Tumor Microenvironment
4.
Cancer Biol Ther ; 23(1): 1-8, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36201632

ABSTRACT

Stereotactic body radiotherapy (SBRT) demonstrates excellent local control in early stage lung cancer, however a quarter of patients develop recurrence or distant metastasis. Transforming growth factor-beta (TGF-ß) supports metastasis and treatment resistance, and angiotensin receptor blockade (ARB) indirectly suppresses TGF-ß signaling. This study investigates whether patients taking ARBs while undergoing SBRT for early stage lung cancer exhibited improved overall survival (OS) or recurrence free survival (RFS) compared to patients not taking ARBs. This was a single institution retrospective analysis of 272 patients treated with SBRT for early stage lung cancer between 2009 and 2018. Patient health data was abstracted from the electronic medical record. OS and RFS were assessed using Kaplan-Meier method. Log-rank test was used to compare unadjusted survival between groups. Univariable and multivariable Cox proportional hazard regression models were used to estimate hazard ratios (HRs). Of 247 patients analyzed, 24 (10%) patients took ARBs for the duration of radiotherapy. There was no difference in mean age, median tumor diameter, or median biologic effective dose between patients taking ARBs or not. Patients taking ARBs exhibited increased OS (ARB = 96.7 mo.; no ARB = 43.3 mo.; HR = 0.25 [95% CI: 0.10 to 0.62, P = .003]) and increased RFS (median RFS, ARB = 64.3 mo.; No ARB = 35.1 mo.; HR = 0.26 [95% CI: 0.10 to 0.63, P = .003]). These effects were not seen in patients taking angiotensin converting enzyme inhibitors (ACEIs) or statins. ARB use while undergoing SBRT for early stage lung cancer may increase OS and RFS, but ACEI use does not show the same effect.


Subject(s)
Biological Products , Carcinoma, Non-Small-Cell Lung , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Lung Neoplasms , Radiosurgery , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Biological Products/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Receptors, Angiotensin/therapeutic use , Retrospective Studies , Transforming Growth Factor beta , Transforming Growth Factors/therapeutic use , Treatment Outcome
5.
Cancer Gene Ther ; 29(5): 533-542, 2022 05.
Article in English | MEDLINE | ID: mdl-33850305

ABSTRACT

Overexpression of O6-methylguanine DNA methyltransferase (MGMT) contributes to resistance to chemo-radiation therapy (CRT) in brain tumors. We previously demonstrated that non-ablative radiation improved delivery of anti-MGMT morpholino oligonucleotides (AMONs) to reduce MGMT levels in subcutaneous tumor xenografts. We evaluate this approach to enhance CRT efficacy in rat brain tumor xenograft models. The impact of radiation on targeted delivery was evaluated using fluorescent oligonucleotides (f-ON). In vitro, f-ON was localized to clathrin-coated vesicles, endosomes, and lysosomes using confocal microscopy in T98G glioma cells. In vivo, fluorescence was detected in pre-radiated, but not non-radiated Long Evans (non-tumor bearing) rat brains. Cranial radiation (2 Gy) followed by AMONs (intravenous, 10.5 mg/kg) reduced MGMT expression by 50% in both orthotopic cerebellar D283 medulloblastoma and intracerebral H460 non-small cell lung carcinoma (NSCLC) xenograft models. To evaluate the efficacy, AMONs concurrent with CRT (2 Gy radiation plus oral 20 mg/kg temozolomide ×4 days) reduced tumor volumes in the medulloblastoma model (p = 0.012), and a similar trend was found in the NSCLC brain metastasis model. We provide proof of concept for the use of non-ablative radiation to guide and enhance the delivery of morpholino oligonucleotides into brain tumor xenograft models to reduce MGMT levels and improve CRT efficacy.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Heterografts , Humans , Morpholinos , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Oligonucleotides, Antisense/pharmacology , Rats , Rats, Long-Evans , Xenograft Model Antitumor Assays
6.
Front Chem ; 9: 642530, 2021.
Article in English | MEDLINE | ID: mdl-33748077

ABSTRACT

Recent interest in cancer immunotherapy has largely been focused on the adaptive immune system, particularly adoptive T-cell therapy and immune checkpoint blockade (ICB). Despite improvements in overall survival and progression-free survival across multiple cancer types, neither cell-based therapies nor ICB results in durable disease control in the majority of patients. A critical component of antitumor immunity is the mononuclear phagocyte system and its role in both innate and adaptive immunity. The phagocytic functions of these cells have been shown to be modulated through multiple pathways, including the CD47-SIRPα axis, which is manipulated by cancer cells for immune evasion. In addition to CD47, tumors express a variety of other "don't eat me" signals, including beta-2-microglobulin and CD24, and "eat me" signals, including calreticulin and phosphatidylserine. Therapies targeting these signals can lead to increased phagocytosis of cancer cells; however, because "don't eat me" signals are markers of "self" on normal cells, treatment can result in negative off-target effects, such as anemia and B-cell depletion. Recent preclinical research has demonstrated the potential of nanocarriers to synergize with prophagocytic therapies, address the off-target effects, improve pharmacokinetics, and codeliver chemotherapeutics. The high surface area-to-volume ratio of nanoparticles paired with preferential size for passive targeting allows for greater accumulation of therapeutic cargo. In addition, nanomaterials hold promise as molecular imaging agents for the detection of phagocytic markers. This mini review highlights the unique capabilities of nanotechnology to expand the application and efficacy of immunotherapy through recently discovered phagocytotic checkpoint therapies.

7.
J Immunother Cancer ; 8(1)2020 05.
Article in English | MEDLINE | ID: mdl-32457127

ABSTRACT

BACKGROUND: High-dose radiotherapy (RT) is known to be immunogenic, but is rarely capable of driving clinically relevant abscopal antitumor immunity as monotherapy. RT is known to increase antigen presentation, type I/II interferon responses, and immune cell trafficking to irradiated tumors. Bempegaldesleukin (NKTR-214) is a CD122-preferential interleukin 2 (IL-2) pathway agonist that has been shown to increase tumor-infiltrating lymphocytes, T cell clonality, and increase PD-1 expression. NKTR-214 has increased drug half-life, decreased toxicity, and increased CD8+ T cell and natural killer cell stimulation compared with IL-2. METHODS: Animals bearing bilateral subcutaneous MCA-205 fibrosarcoma or CT26 colorectal tumors were treated with NKTR-214, RT, or combination therapy, and tumor growth of irradiated and abscopal lesions was assessed. Focal RT was delivered using a small animal radiation research platform. Peripheral and tumor-infiltrating immune phenotype and functional analyses were performed by flow cytometry. RNA expression profiling from both irradiated and abscopal lesions was performed using microarray. RESULTS: We demonstrate synergy between RT of a single tumor and NKTR-214 systemic therapy resulting in dramatically increased cure rates of mice bearing bilateral tumors compared with RT or NKTR-214 therapy alone. Combination therapy resulted in increased magnitude and effector function of tumor-specific CD8+ T cell responses and increased trafficking of these T cells to both irradiated and distant, unirradiated, tumors. CONCLUSIONS: Given the increasing role of hypofractionated and stereotactic body RT as standard of care treatments in the management of locally advanced and metastatic cancer, these data have important implications for future clinical trial development. The combination of RT and NKTR-214 therapy potently stimulates systemic antitumor immunity and should be evaluated for the treatment of patients with locally advanced and metastatic solid tumors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/therapy , Fibrosarcoma/therapy , Interleukin-2/analogs & derivatives , Lymphocytes, Tumor-Infiltrating/immunology , Polyethylene Glycols/therapeutic use , Radiotherapy/methods , Sarcoma, Experimental/therapy , Animals , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Combined Modality Therapy , Female , Fibrosarcoma/immunology , Fibrosarcoma/pathology , Immunotherapy/methods , Interleukin-2/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Sarcoma, Experimental/immunology , Sarcoma, Experimental/pathology , T-Lymphocytes, Regulatory/immunology
8.
J Immunother Cancer ; 6(1): 6, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29375032

ABSTRACT

Radiotherapy (RT) has been a fundamental component of the anti-cancer armamentarium for over a century. Approximately half of all cancer patients are treated with radiotherapy during their disease course. Over the two past decades, there has been a growing body of preclinical evidence supporting the immunomodulatory effects of radiotherapy, particularly when combined with immunotherapy, but only anecdotal clinical examples existed until recently. The renaissance of immunotherapy and the recent U.S. Food and Drug Administration (FDA) approval of several immune checkpoint inhibitors (ICIs) and other immuno-oncology (IO) agents in multiple cancers provides the opportunity to investigate how localized radiotherapy can induce systemic immune responses. Early clinical experiences have demonstrated feasibility of this approach but additional preclinical and clinical investigation is needed to understand how RT and immunotherapy can be optimally combined.To address questions that are critical to successful incorporation of radiation oncology into immunotherapy, the American Society for Radiation Oncology (ASTRO), the Society for Immunotherapy of Cancer (SITC) and the National Cancer Institute (NCI) organized a collaborative scientific workshop, Incorporating Radiation Oncology into Immunotherapy, that convened on June 15 and 16 of 2017 at the Natcher Building, NIH Campus in Bethesda, Maryland. This report summarizes key data and highlights from each session.


Subject(s)
Neoplasms/drug therapy , Neoplasms/radiotherapy , Animals , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor , Combined Modality Therapy , Humans , Immunotherapy , Radiation Oncology
9.
Int J Radiat Oncol Biol Phys ; 97(2): 362-371, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28011047

ABSTRACT

PURPOSE: For inoperable stage I (T1-T2N0) small cell lung cancer (SCLC), national guidelines recommend chemotherapy with or without conventionally fractionated radiation therapy. The present multi-institutional cohort study investigated the role of stereotactic ablative radiation therapy (SABR) for this population. METHODS AND MATERIALS: The clinical and treatment characteristics, toxicities, outcomes, and patterns of failure were assessed in patients with histologically confirmed stage T1-T2N0M0 SCLC. Kaplan-Meier analysis was used to evaluate the survival outcomes. Univariate and multivariate analyses identified predictors of outcomes. RESULTS: From 24 institutions, 76 lesions were treated in 74 patients (median follow-up 18 months). The median age and tumor size was 72 years and 2.5 cm, respectively. Chemotherapy and prophylactic cranial irradiation were delivered in 56% and 23% of cases, respectively. The median SABR dose and fractionation was 50 Gy and 5 fractions. The 1- and 3-year local control rate was 97.4% and 96.1%, respectively. The median disease-free survival (DFS) duration was 49.7 months. The DFS rate was 58.3% and 53.2% at 1 and 3 years, respectively. The median, 1-year, and 3-year disease-specific survival was 52.3 months, 84.5%, and 64.4%, respectively. The median, 1-year, and 3-year overall survival (OS) was 17.8 months, 69.9%, and 34.0% respectively. Patients receiving chemotherapy experienced an increased median DFS (61.3 vs 9.0 months; P=.02) and OS (31.4 vs 14.3 months; P=.02). The receipt of chemotherapy independently predicted better outcomes for DFS/OS on multivariate analysis (P=.01). Toxicities were uncommon; 5.2% experienced grade ≥2 pneumonitis. Post-treatment failure was most commonly distant (45.8% of recurrence), followed by nodal (25.0%) and "elsewhere lung" (20.8%). The median time to each was 5 to 7 months. CONCLUSIONS: From the findings of the largest report of SABR for stage T1-T2N0 SCLC to date, SABR (≥50 Gy) with chemotherapy should be considered a standard option.


Subject(s)
Lung Neoplasms/radiotherapy , Radiosurgery/methods , Small Cell Lung Carcinoma/radiotherapy , Adult , Aged , Aged, 80 and over , Analysis of Variance , Antineoplastic Agents/therapeutic use , Combined Modality Therapy/methods , Cranial Irradiation/statistics & numerical data , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Proportional Hazards Models , Radiation Pneumonitis/etiology , Radiosurgery/adverse effects , Radiotherapy Dosage , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/pathology , Treatment Outcome , Tumor Burden
10.
Cancer ; 123(4): 688-696, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27741355

ABSTRACT

BACKGROUND: Stereotactic body radiotherapy (SBRT) is the standard of care for patients with nonoperative, early-stage non-small cell lung cancer (NSCLC) measuring < 5 cm, but its use among patients with tumors measuring ≥5 cm is considerably less defined, with the existing literature limited to small, single-institution reports. The current multi-institutional study reported outcomes evaluating the largest such population reported to date. METHODS: Clinical/treatment characteristics, outcomes, toxicities, and patterns of failure were assessed in patients with primary NSCLC measuring ≥5 cm without evidence of distant/lymph node metastasis who underwent SBRT using ≤5 fractions. Statistics included Kaplan-Meier survival analyses and univariate/multivariate Cox proportional hazards models. RESULTS: A total of 92 patients treated from 2004 through 2016 were analyzed from 12 institutions. The median follow-up was 12 months (15 months in survivors). The median age and tumor size among the patients were 73 years (range, 50-95 years) and 5.4 cm (range, 5.0-7.5 cm), respectively. The median dose/fractionation was 50 Gray/5 fractions. The actuarial local control rates at 1 year and 2 years were 95.7% and 73.2%, respectively. The disease-free survival rate was 72.1% and 53.5%, respectively, at 1 year and 2 years. The 1-year and 2-year disease-specific survival rates were 95.5% and 78.6%, respectively. The median, 1-year, and 2-year overall survival rates were 21.4 months, 76.2%, and 46.4%, respectively. On multivariate analysis, lung cancer history and pre-SBRT positron emission tomography maximum standardized uptake value were found to be associated with overall survival. Posttreatment failures were most commonly distant (33% of all disease recurrences), followed by local (26%) and those occurring elsewhere in the lung (23%). Three patients had isolated local failures. Grade 3 to 4 toxicities included 1 case (1%) and 4 cases (4%) of grade 3 dermatitis and radiation pneumonitis, respectively (toxicities were graded according to the Common Terminology Criteria for Adverse Events [version 4.0]). Grades 2 to 5 radiation pneumonitis occurred in 11% of patients. One patient with a tumor measuring 7.5 cm and a smoking history of 150 pack-years died of radiation pneumonitis. CONCLUSIONS: The results of the current study, which is the largest study of patients with NSCLC measuring ≥5 cm reported to date, indicate that SBRT is a safe and efficacious option. Cancer 2017;123:688-696. © 2016 American Cancer Society.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Neoplasm Recurrence, Local/radiotherapy , Radiosurgery , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/epidemiology , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , Dose Fractionation, Radiation , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/pathology , Treatment Outcome
11.
Adv Radiat Oncol ; 1(2): 132-135, 2016.
Article in English | MEDLINE | ID: mdl-28740881

ABSTRACT

Three-dimensional (3D) printing has emerged as a promising modality for the production of medical devices. Here we describe the design, production, and implementation of a series of sizing tools for use in an intraoperative breast brachytherapy program. These devices were produced using a commercially available low-cost 3D printer and software, and their implementation resulted in an immediate decrease in consumable costs without affecting the quality of care or the speed of delivery. This work illustrates the potential of 3D printing to revolutionize the field of medical devices, enabling physicians to rapidly develop and prototype novel tools.

12.
J Virol ; 86(24): 13735-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23055558

ABSTRACT

CD8(+) T cells play an important role in protection against both acute and persistent viral infections, and new vaccines that induce CD8(+) T cell immunity are currently needed. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cells can be generated in response to a nonreplicating H(2)O(2)-inactivated whole-virus vaccine (H(2)O(2)-LCMV). Vaccine-induced CD8(+) T cell responses exhibited an increased ability to produce multiple cytokines at early time points following immunization compared to infection-induced responses. Vaccination with H(2)O(2)-LCMV induced the expansion of a narrow subset of the antigen-specific CD8(+) T cells induced by LCMV strain Arm infection, resulting in a distinct immunodominance hierarchy. Acute LCMV infection stimulated immunodominance patterns that shifted over time or after secondary infection, whereas vaccine-generated immunodominance profiles remained remarkably stable even following subsequent viral infection. Vaccine-induced CD8(+) T cell populations expanded sharply in response to challenge and were then maintained at high levels, with responses to individual epitopes occupying up to 40% of the CD8(+) T cell compartment at 35 days after challenge. H(2)O(2)-LCMV vaccination protected animals against challenge with chronic LCMV clone 13, and protection was mediated by CD8(+) T cells. These results indicate that vaccination with an H(2)O(2)-inactivated whole-virus vaccine induces LCMV-specific CD8(+) T cells with unique functional characteristics and provides a useful model for studying CD8(+) T cells elicited in the absence of active viral infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hydrogen Peroxide/pharmacology , Immunodominant Epitopes/immunology , Viral Vaccines/immunology , Amino Acid Sequence , Animals , Cytokines/biosynthesis , Immunodominant Epitopes/chemistry , Lymphocytic choriomeningitis virus/drug effects , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Molecular Sequence Data
13.
Adv Exp Med Biol ; 684: 96-107, 2010.
Article in English | MEDLINE | ID: mdl-20795543

ABSTRACT

Investigation of T-cell-mediated immunity following acute viral infection represents an area of research with broad implications for both fundamental immunology research as well as vaccine development. Here, we review techniques that are used to assess T-cell memory including limiting dilution analysis, enzyme-linked immunospot (ELISPOT) assays, intracellular cytokine staining (ICCS) and peptide-MHC Class I tetramer staining. The durability of T-cell memory is explored in the context of several acute viral infections including vaccinia virus (VV), measles virus (MV) and yellow fever virus (YFV). Following acute infection, different virus-specific T-cell subpopulations exhibit distinct cytokine profiles and these profiles change over the course of infection. Differential regulation of the cytotoxic proteins, granzyme A, granzyme B and perforin are also observed in virus-specific T cells following infection. As a result of this work, we have gained a broader understanding of the kinetics and magnitude of antiviral T-cell immunity as well as new insight into the patterns of immunodominance and differential regulation of cytokines and cytotoxicity-associated molecules. This information may eventually lead to the generation of more effective vaccines that elicit T-cell memory with the optimal combination of functional characteristics required for providing protective immunity against infectious disease.


Subject(s)
Immunologic Memory/immunology , T-Lymphocyte Subsets/immunology , Virus Diseases/immunology , Animals , Humans , Lymphocyte Activation
14.
J Exp Med ; 206(7): 1575-88, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19546246

ABSTRACT

Depletion of CD8(+) lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8(+) lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8(+) lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4(+) effector memory T (T(EM)) cells and, to a lesser extent, transitional memory T (T(TrM)) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4(+)/CCR5(+) SIV "target" cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8(+) lymphocytes in SIV(-) RMs led to a sustained increase in the number of potential CD4(+) SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4(+) T(EM) cell proliferation of CD8(+) lymphocyte-depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4(+) T(EM) and T(TrM) cell proliferation, it did not recapitulate the viral dynamics of CD8(+) lymphocyte depletion. These data suggest that CD8(+) lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Lymphocyte Depletion , Receptors, CCR5/immunology , Simian Immunodeficiency Virus , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/cytology , Cell Proliferation , Immunologic Memory/immunology , Interleukin-15/blood , Interleukin-15/genetics , Interleukin-15/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity , Survival Rate , T-Lymphocyte Subsets/cytology , Virus Replication
15.
Immunity ; 28(5): 604-6, 2008 May.
Article in English | MEDLINE | ID: mdl-18482565

ABSTRACT

In this issue of Immunity, Miller et al. (2008) use multiple independent techniques to demonstrate that antiviral T cell responses after acute human infection are much larger than previously realized.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Histocompatibility Antigens Class I/immunology , Lymphocyte Activation , Vaccinia virus/immunology , Virus Diseases/immunology , Yellow fever virus/immunology , Acute Disease , CD8-Positive T-Lymphocytes/metabolism , Cytokines/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Virus Diseases/metabolism
16.
J Immunol ; 180(1): 269-80, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18097028

ABSTRACT

CMV infection induces robust CD4+ T cell responses in immunocompetent hosts that orchestrate immune control of viral replication, dissemination, and disease. In this study, we characterized the clonotypic composition of CD4+ T cell populations specific for rhesus CMV (RhCMV) in chronically infected adult rhesus macaques (RM) and in juvenile RM undergoing primary RhCMV infection and subsequent secondary challenge with RhCMV. In adult RM with established chronic infection, RhCMV-specific CD4+ T cell populations exhibited stable, pauciclonal structures with skewed hierarchies dominated by two or three clonotypes. During primary infection, in contrast, the initial RhCMV-specific CD4+ T cell populations were highly polyclonal and progressive evolution to the chronic pattern manifest in adults occurred over the ensuing 2-3 years. Clear patterns of clonal succession were observed during this maturation process, such that clonotypes present in the acute phase were largely replaced over time. However, rechallenge with RhCMV expanded virus-specific CD4+ T cell clonotypes identified solely during acute infection. These findings indicate that, during persistent viral infection, substantial selection pressures and ongoing clonotype recruitment shape the specific CD4+ T cell repertoire and that rapidly exhausted or superseded clonotypes often remain within the memory T cell pool.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Amino Acid Sequence , Animals , Clone Cells , Disease Models, Animal , Gene Expression , Genes, T-Cell Receptor beta , Macaca mulatta , Molecular Sequence Data , Virus Replication
17.
J Exp Med ; 204(9): 2171-85, 2007 Sep 03.
Article in English | MEDLINE | ID: mdl-17724130

ABSTRACT

Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4(+) CCR5(+) effector-memory T (T(EM)) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4(+) memory T cell proliferation appears to prevent collapse of effector site CD4(+) T(EM) cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4(+) T(EM) cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4(+) T(EM) cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4(+) T(EM) cells from central-memory T (T(CM)) cell precursors. The instability of effector site CD4(+) T(EM) cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5(-) CD4(+) T(CM) cells. These data suggest that although CD4(+) T(EM) cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4(+) T(CM) cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Immunologic Memory/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/immunology , Animals , Bronchoalveolar Lavage Fluid/cytology , CD4-Positive T-Lymphocytes/virology , Cell Movement , Cell Proliferation , Cell Survival , Chronic Disease , Cytotoxicity, Immunologic , Homeostasis , Immunity, Cellular , Kinetics , Lung/immunology , Lung/pathology , Lung/virology , Lymphoid Tissue/pathology , Lymphoid Tissue/virology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Time Factors , Viral Load
18.
J Immunother ; 29(6): 575-85, 2006.
Article in English | MEDLINE | ID: mdl-17063120

ABSTRACT

The immune-stimulatory properties of anti-CD134 (OX40) antibodies have been well documented in rodents, including their ability to enhance antitumor immunity. In this study, an anti-OX40 antibody (Ab) known to costimulate monkey T cells in vitro, was infused into rhesus macaque monkeys during immunization with the simian immunodeficiency virus protein, gp130. The draining lymph nodes from immunized monkeys treated with anti-OX40 were enlarged compared with immunized monkeys injected with mouse Ig. Anti-OX40-treated monkeys had increased gp130-specific Ab titers, and increased long-lived T-cell responses, compared with controls. There were no overt signs of toxicity in the anti-OX40-treated monkeys. The encouraging immune-stimulatory effects led to the good manufacturing practice production of an anti-OX40 Ab for clinical trials in cancer patients. A detailed toxicology study was performed with anti-OX40 in nonhuman primates. Three groups of 8 monkeys received anti-OX40 at 1 of 3 dose levels (0.4, 2.0, and 10 mg/kg) and a control group received saline. No clinical toxicity was observed, but acute splenomegaly and enlarged gut-associated lymph nodes were observed in the anti-OX40-treated animals; splenomegaly and lymphadenopathy resolved by day 28. These studies demonstrate the immune-stimulatory properties and safety of anti-OX40 in primates and provide a strong scientific rationale to pursue clinical trials in humans.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Monoclonal/administration & dosage , Immunotherapy, Active/methods , Receptors, OX40/immunology , Adjuvants, Immunologic/pharmacokinetics , Adjuvants, Immunologic/toxicity , Animals , Antibodies/blood , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/toxicity , Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Count , Female , Gene Products, env/immunology , Humans , Hyperplasia , Lymph Nodes/cytology , Lymph Nodes/drug effects , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphocyte Count , Macaca fascicularis , Macaca mulatta , Male , Organ Size/drug effects , Receptors, OX40/metabolism , Spleen/drug effects , Spleen/immunology , Spleen/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
J Exp Med ; 200(10): 1299-314, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15545355

ABSTRACT

The mechanisms linking human immunodeficiency virus replication to the progressive immunodeficiency of acquired immune deficiency syndrome are controversial, particularly the relative contribution of CD4+ T cell destruction. Here, we used the simian immunodeficiency virus (SIV) model to investigate the relationship between systemic CD4+ T cell dynamics and rapid disease progression. Of 18 rhesus macaques (RMs) infected with CCR5-tropic SIVmac239 (n=14) or CXCR4-tropic SIVmac155T3 (n=4), 4 of the former group manifested end-stage SIV disease by 200 d after infection. In SIVmac155T3 infections, naive CD4+ T cells were dramatically depleted, but this population was spared by SIVmac239, even in rapid progressors. In contrast, all SIVmac239-infected RMs demonstrated substantial systemic depletion of CD4+ memory T cells by day 28 after infection. Surprisingly, the extent of CD4+ memory T cell depletion was not, by itself, a strong predictor of rapid progression. However, in all RMs destined for stable infection, this depletion was countered by a striking increase in production of short-lived CD4+ memory T cells, many of which rapidly migrated to tissue. In all rapid progressors (P <0.0001), production of these cells initiated but failed by day 42 of infection, and tissue delivery of new CD4+ memory T cells ceased. Thus, although profound depletion of tissue CD4+ memory T cells appeared to be a prerequisite for early pathogenesis, it was the inability to respond to this depletion with sustained production of tissue-homing CD4+ memory T cells that best distinguished rapid progressors, suggesting that mechanisms of the CD4+ memory T cell generation play a crucial role in maintaining immune homeostasis in stable SIV infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/physiopathology , Simian Immunodeficiency Virus/pathogenicity , Analysis of Variance , Animals , Bromodeoxyuridine , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/metabolism , Disease Progression , Flow Cytometry , Fluorescent Antibody Technique , Macaca mulatta , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...