Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Pediatr Nephrol ; 31(6): 885-95, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26293980

ABSTRACT

Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together, these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans.


Subject(s)
Fibroblast Growth Factors/metabolism , Kidney/growth & development , Organogenesis , Receptors, Fibroblast Growth Factor/metabolism , Ureter/growth & development , Urinary Bladder/growth & development , Wolffian Ducts/growth & development , Acanthosis Nigricans/genetics , Acanthosis Nigricans/metabolism , Acrocephalosyndactylia/genetics , Acrocephalosyndactylia/metabolism , Animals , Antley-Bixler Syndrome Phenotype/genetics , Antley-Bixler Syndrome Phenotype/metabolism , Apoptosis , Craniosynostoses/genetics , Craniosynostoses/metabolism , Ear/abnormalities , Gene Knockout Techniques/methods , Humans , Kidney/metabolism , Kidney/pathology , Mice , Models, Animal , Mutation , Organogenesis/genetics , Receptors, Fibroblast Growth Factor/genetics , Scalp Dermatoses/genetics , Scalp Dermatoses/metabolism , Signal Transduction , Skin Abnormalities/genetics , Skin Abnormalities/metabolism , T-Box Domain Proteins/genetics , Ureter/metabolism , Ureter/pathology , Urinary Bladder/metabolism , Urinary Bladder/pathology , Wolffian Ducts/metabolism
3.
Dev Biol ; 400(1): 82-93, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25641696

ABSTRACT

Previous studies using transgenic Pax3cre mice have revealed roles for fibroblast growth factor receptors (Fgfrs) and Fgfr substrate 2α (Frs2α) signaling in early metanephric mesenchyme patterning and in ureteric morphogenesis. The role of Fgfr/Frs2α signaling in nephron progenitors is unknown. Thus, we generated mouse models using BAC transgenic Six2EGFPcre (Six2cre) mediated deletion of Fgfrs and/or Frs2α in nephron progenitors. Six2cre mediated deletion of Fgfr1 or Fgfr2 alone led to no obvious kidney defects. Six2creFgfr1(flox/flox)Fgfr2(flox/flox) (Fgfr1/2(NP-/-)) mice generate a discernable kidney; however, they develop nephron progenitor depletion starting at embryonic day 12.5 (E12.5) and later demonstrate severe cystic dysplasia. To determine the role of Frs2α signaling downstream of Fgfr2 in Fgfr1/2(NP-/-) mice, we generated Six2cre(,)Fgfr1(flox/flox)Fgfr2(LR/LR) (Fgfr1(NP-/-)Fgfr2(LR/LR)) mice that have point mutations in the Frs2α binding site of Fgfr2. Like Fgfr1/2(NP-/-) mice, Fgfr1(NP-/-)Fgfr2(LR/LR) develop nephron progenitor depletion, but it does not start until E14.5 and older mice have less severe cystic dysplasia than Fgfr1/2(NP-/-) To determine the role of Frs2α alone in nephron progenitors, we generated Six2creFrs2'A(flox/flox) (Frs2a(NP-/-)) mice. Frs2a(NP-/-)mice also develop nephron progenitor depletion and renal cysts, although these occurred later and were less severe than in the other Six2cre mutant mice. The nephron progenitor loss in all Six2cre mutant lines was associated with decreased Cited1 expression and increased apoptosis versus controls. FAC-sorted nephron progenitors in Six2cre Frs2'A(flox/flox) mice demonstrated evidence of increased Notch activity versus controls, which likely drives the progenitor defects. Thus, Fgfr1 and Fgfr2 have synergistic roles in maintaining nephron progenitors; furthermore, Fgfr signaling in nephron progenitors appears to be mediated predominantly by Frs2α.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Membrane Proteins/metabolism , Mesenchymal Stem Cells/physiology , Nephrons/embryology , Signal Transduction/physiology , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins , Flow Cytometry , Mice , Mice, Knockout , Microscopy, Fluorescence , Nuclear Proteins/metabolism , Polymerase Chain Reaction , Receptors, Notch/metabolism , Trans-Activators/metabolism
4.
Respir Res ; 14: 41, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23560845

ABSTRACT

BACKGROUND: Macrophages are traditionally associated with inflammation and host defence, however a greater understanding of macrophage heterogeneity is revealing their essential roles in non-immune functions such as development, homeostasis and regeneration. In organs including the brain, kidney, mammary gland and pancreas, macrophages reside in large numbers and provide essential regulatory functions that shape organ development and maturation. However, the role of macrophages in lung development and the potential implications of macrophage modulation in the promotion of lung maturation have not yet been ascertained. METHODS: Embryonic day (E)12.5 mouse lungs were cultured as explants and macrophages associated with branching morphogenesis were visualised by wholemount immunofluorescence microscopy. Postnatal lung development and the correlation with macrophage number and phenotype were examined using Colony-stimulating factor-1 receptor-enhanced green fluorescent protein (Csf1r-EGFP) reporter mice. Structural histological examination was complemented with whole-body plethysmography assessment of postnatal lung functional maturation over time.Flow cytometry, real-time (q)PCR and immunofluorescence microscopy were performed to characterise macrophage number, phenotype and localisation in the lung during postnatal development. To assess the impact of developmental macrophage modulation, CSF-1 was administered to neonatal mice at postnatal day (P)1, 2 and 3, and lung macrophage number and phenotype were assessed at P5. EGFP transgene expression and in situ hybridisation was performed to assess CSF-1R location in the developing lung. RESULTS: Macrophages in embryonic lungs were abundant and densely located within branch points during branching morphogenesis. During postnatal development, structural and functional maturation of the lung was associated with an increase in lung macrophage number. In particular, the period of alveolarisation from P14-21 was associated with increased number of Csf1r-EGFP+ macrophages and upregulated expression of Arginase 1 (Arg1), Mannose receptor 1 (Mrc1) and Chemokine C-C motif ligand 17 (Ccl17), indicative of an M2 or tissue remodelling macrophage phenotype. Administration of CSF-1 to neonatal mice increased trophic macrophages during development and was associated with increased expression of the M2-associated gene Found in inflammatory zone (Fizz)1 and the growth regulator Insulin-like growth factor (Igf)1. The effects of CSF-1 were identified as macrophage-mediated, as the CSF-1R was found to be exclusively expressed on interstitial myeloid cells. CONCLUSIONS: This study identifies the presence of CSF-1R+ M2-polarised macrophages localising to sites of branching morphogenesis and increasing in number during the alveolarisation stage of normal lung development. Improved understanding of the role of macrophages in lung developmental regulation has clinical relevance for addressing neonatal inflammatory perturbation of development and highlights macrophage modulation as a potential intervention to promote lung development.


Subject(s)
Embryonic Development/physiology , Macrophages/cytology , Macrophages/physiology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/embryology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Animals , Cell Polarity/physiology , Cells, Cultured , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/growth & development
5.
PLoS One ; 8(2): e56062, 2013.
Article in English | MEDLINE | ID: mdl-23409123

ABSTRACT

PURPOSE: Pax3cre-mediated deletion of fibroblast growth factor receptor 2 (Fgfr2) broadly in renal and urinary tract mesenchyme led to ureteric bud (UB) induction defects and vesicoureteral reflux (VUR), although the mechanisms were unclear. Here, we investigated whether Fgfr2 acts specifically in peri-Wolffian duct stroma (ST) to regulate UB induction and development of VUR and the mechanisms of Fgfr2 activity. METHODS: We conditionally deleted Fgfr2 in ST (Fgfr2(ST-/-)) using Tbx18cre mice. To look for ureteric bud induction defects in young embryos, we assessed length and apoptosis of common nephric ducts (CNDs). We performed 3D reconstructions and histological analyses of urinary tracts of embryos and postnatal mice and cystograms in postnatal mice to test for VUR. We performed in situ hybridization and real-time PCR in young embryos to determine mechanisms underlying UB induction defects. RESULTS: We confirmed that Fgfr2 is expressed in ST and that Fgfr2 was efficiently deleted in this tissue in Fgfr2(ST-/-) mice at embryonic day (E) 10.5. E11.5 Fgfr2(ST-/-) mice had randomized UB induction sites with approximately 1/3 arising too high and 1/3 too low from the Wolffian duct; however, apoptosis was unaltered in E12.5 mutant CNDs. While ureters were histologically normal, E15.5 Fgfr2(ST-/-) mice exhibit improper ureteral insertion sites into the bladder, consistent with the ureteric induction defects. While ureter and bladder histology appeared normal, postnatal day (P) 1 mutants had high rates of VUR versus controls (75% versus 3%, p = 0.001) and occasionally other defects including renal hypoplasia and duplex systems. P1 mutant mice also had improper ureteral bladder insertion sites and shortened intravesicular tunnel lengths that correlated with VUR. E10.5 Fgfr2(ST-/-) mice had decreases in Bmp4 mRNA in stromal tissues, suggesting a mechanism underlying the ureteric induction and VUR phenotypes. CONCLUSION: Mutations in FGFR2 could possibly cause VUR in humans.


Subject(s)
Gene Deletion , Receptor, Fibroblast Growth Factor, Type 2/genetics , Stromal Cells/metabolism , Ureter/abnormalities , Ureter/embryology , Vesico-Ureteral Reflux/genetics , Wolffian Ducts/metabolism , Animals , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Urinary Bladder/abnormalities , Urinary Bladder/embryology , Urogenital Abnormalities/embryology , Urogenital Abnormalities/genetics
6.
Am J Physiol Renal Physiol ; 303(2): F253-8, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22573381

ABSTRACT

While low nephron number is associated with increased risk of developing cardiovascular and renal disease, the functional consequences of a high nephron number are unknown. We tested the hypothesis that a high nephron number provides protection against hypertensive and renal insults. Mean arterial pressure (MAP) and renal function were characterized in male wild-type (WT) and transforming growth factor-ß2 heterozygous (Tgfb2(+/-)) mice under basal conditions and following a chronic high-salt diet. Kidneys were collected for unbiased stereological analysis. Baseline MAP and renal function were indistinguishable between genotypes. The chronic high-salt diet (5% NaCl for 4 wk followed by 8% NaCl for 4 wk) led to similar step-wise increases in urine volume, Na(+) excretion, and albuminuria in the genotypes. The 5% NaCl diet induced modest and similar increases in MAP (3.5 ± 1.6 and 3.4 ± 0.8 mmHg in WT and Tgfb2(+/-), respectively). After the step up to the 8% NaCl diet, MAP increased further in WT (+15.9 ± 5.1 mmHg), but not Tgfb2(+/-) (-0.1 ± 1.0 mmHg), mice. Nephron number was 30% greater in Tgfb2(+/-) than WT mice and was not affected by the chronic high-salt diet. Mean glomerular volume was lower in Tgfb2(+/-) than WT mice, and the chronic high-salt diet induced significant glomerular hypertrophy. In a separate cohort of mice, an acute, 7-day, 8% NaCl diet induced similar rises in MAP in the genotypes. This is the first study to examine the physiological characteristics of a model of high nephron number, and the findings are consistent with this phenotype providing protection against chronic, but not acute, hypertensive insults.


Subject(s)
Hypertension/chemically induced , Hypertension/prevention & control , Nephrons/cytology , Nephrons/physiology , Sodium Chloride/adverse effects , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cell Count , Disease Models, Animal , Dose-Response Relationship, Drug , Genotype , Heterozygote , Hypertension/pathology , Male , Mice , Mice, Mutant Strains , Nephrons/drug effects , Phenotype , Sodium Chloride/pharmacology , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/physiology
7.
PLoS One ; 6(4): e18723, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21533152

ABSTRACT

Betaglycan is an accessory receptor for the transforming growth factor-ß (TGFß) superfamily, many members of which play key roles in kidney development. The purpose of this study was to define the role of this co-receptor on fetal murine kidney development. Stereological examination of embryonic and adult betaglycan heterozygous kidneys revealed augmented nephron number relative to littermate controls. Fetal heterozygous kidneys exhibited accelerated ureteric branching, which correlated with augmented nephron development at embryonic day (e) 15.5. In contrast, betaglycan null kidneys exhibited renal hypoplasia from e13.5 and reduced nephron number at e15.5. Quantitative real-time PCR analysis of e11.5-e14.5 kidneys demonstrated that heterozygous kidneys exhibited a transient decrease in Bmp4 expression at e11.5 and a subsequent cascade of changes in the gene regulatory network that governs metanephric development, including significant increases in Pax2, Eya1, Gdnf, Ret, Wnt4, and Wt1 expression. Conversely, gene expression in null kidneys was normal until e13.5, when significant reductions were detected in the expression of Bmp4 as well as other key metanephric regulatory genes. Tgfb1 and Tgfb2 mRNA expression was down-regulated in both nulls and heterozygotes at e13.5 and e14.5. The opposing morphological and molecular phenotypes in betaglycan heterozygote and null mutants demonstrate that the levels of betaglycan must be tightly regulated for optimal kidney development.


Subject(s)
Nephrons/physiology , Proteoglycans/physiology , Receptors, Transforming Growth Factor beta/physiology , Animals , Mice , Mice, Knockout , Polymerase Chain Reaction , Proteoglycans/genetics , Receptors, Transforming Growth Factor beta/genetics , Signal Transduction
9.
Nephron Exp Nephrol ; 111(2): e42-50, 2009.
Article in English | MEDLINE | ID: mdl-19142025

ABSTRACT

UNLABELLED: 17beta-Estradiol, the most potent circulating estrogen, has been shown to greatly impact on the development and formation of tissues of the urogenital tract. The adult kidney has previously been shown to be highly responsive to 17beta-estradiol stimulation. However, the direct effect of 17beta-estradiol on kidney development remains unclear. AIM: To investigate the direct effect of 17beta-estradiol on male and female metanephric kidney development. METHODS: Whole embryonic-day-12.5 (E12.5) C57Bl/6 male and female mouse metanephroi were cultured in the presence of varying concentrations of 17beta-estradiol (0.1-5.0 nM) for 72 h. Metanephric development was assessed using immunofluorescence labeling techniques. The real-time polymerase chain reaction was used to investigate estrogen receptor-alpha (ERalpha), glial-cell-line-derived neurotrophic factor (GDNF) and its associated receptor cRET, transforming growth factor-beta (TGFbeta1), TGFbeta2 and TGFbeta3 mRNA expression levels. RESULTS: ERalpha was present in developing metanephroi at E12.5; however, ERbeta was absent. No significant sex difference in ERalpha mRNA expression was observed. Significant increases in the number of ureteric branch points, terminal tips and developing glomeruli were observed in female metanephroi cultured in the presence of 1.0 and 5.0 nM 17beta-estradiol. Conversely, no significant effect was observed in male metanephroi cultured with 17beta-estradiol. GDNF and cRET mRNA expression was increased in both male and female metanephroi, whilst TGFbeta1 and TGFbeta2 mRNA expression was decreased following culture in the presence of 17beta-estradiol. CONCLUSION: This study is the first to establish that the mouse metanephros displays a sexual dimorphism in response to specific concentrations of estrogens.


Subject(s)
Estradiol/administration & dosage , Kidney/drug effects , Kidney/growth & development , Sex Characteristics , Animals , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...