Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(34): 13835-13844, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34423974

ABSTRACT

The diversity of the reactions catalyzed by radical S-adenosyl-l-methionine (SAM) enzymes is achieved at least in part through the variety of mechanisms to quench their radical intermediates. In the SPASM-twitch family, the largest family of radical SAM enzymes, the radical quenching step is thought to involve an electron transfer to or from an auxiliary 4Fe-4S cluster in or adjacent to the active site. However, experimental demonstration of such functions remains limited. As a representative member of this family, MoaA has one radical SAM cluster ([4Fe-4S]RS) and one auxiliary cluster ([4Fe-4S]AUX), and catalyzes a unique 3',8-cyclization of GTP into 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP) in the molybdenum cofactor (Moco) biosynthesis. Here, we report a mechanistic investigation of the radical quenching step in MoaA, a chemically challenging reduction of 3',8-cyclo-GTP-N7 aminyl radical. We first determined the reduction potentials of [4Fe-4S]RS and [4Fe-4S]AUX as -510 mV and -455 mV, respectively, using a combination of protein film voltammogram (PFV) and electron paramagnetic resonance (EPR) spectroscopy. Subsequent Q-band EPR characterization of 5'-deoxyadenosine C4' radical (5'-dA-C4'•) trapped in the active site revealed isotropic exchange interaction (∼260 MHz) between 5'-dA-C4'• and [4Fe-4S]AUX1+, suggesting that [4Fe-4S]AUX is in the reduced (1+) state during the catalysis. Together with density functional theory (DFT) calculation, we propose that the aminyl radical reduction proceeds through a proton-coupled electron transfer (PCET), where [4Fe-4S]AUX serves as an electron donor and R17 residue acts as a proton donor. These results provide detailed mechanistic insights into the radical quenching step of radical SAM enzyme catalysis.


Subject(s)
Free Radicals/chemistry , Guanosine Triphosphate/metabolism , Hydrolases/metabolism , S-Adenosylmethionine/metabolism , Catalytic Domain , Density Functional Theory , Electron Spin Resonance Spectroscopy , Electron Transport , Guanosine Triphosphate/chemistry , Hydrolases/genetics , Molecular Dynamics Simulation , Mutagenesis , S-Adenosylmethionine/chemistry , Staphylococcus aureus/enzymology
2.
J Am Chem Soc ; 142(29): 12620-12634, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32643933

ABSTRACT

Understanding the relationship between the metallocofactor and its protein environment is the key to uncovering the mechanism of metalloenzymes. PqqE, a radical S-adenosylmethionine enzyme in pyrroloquinoline quinone (PQQ) biosynthesis, contains three iron-sulfur cluster binding sites. Two auxiliary iron-sulfur cluster binding sites, designated as AuxI and AuxII, use distinctive ligands compared to other proteins in the family while their functions remain unclear. Here, we investigate the electronic properties of these iron-sulfur clusters and compare the catalytic efficiency of wild-type (WT) Methylorubrum extorquens AM1 PqqE to a range of mutated constructs. Using native mass spectrometry, protein film electrochemistry, and electron paramagnetic resonance spectroscopy, we confirm the previously proposed incorporation of a mixture of [2Fe-2S] and [4Fe-4S] clusters at the AuxI site and are able to assign redox potentials to each of the three iron-sulfur clusters. Significantly, a conservative mutation at AuxI, C268H, shown to selectively incorporate a [4Fe-4S] cluster, catalyzes an enhancement of uncoupled S-adenosylmethionine cleavage relative to WT, together with the elimination of detectable peptide cross-linked product. While a [4Fe-4S] cluster can be tolerated at the AuxI site, the aggregate findings suggest a functional [2Fe-2S] configuration within the AuxI site. PqqE variants with nondestructive ligand replacements at AuxII also show that the reduction potential at this site can be manipulated by changing the electronegativity of the unique aspartate ligand. A number of novel mechanistic features are proposed based on the kinetic and spectroscopic data. Additionally, bioinformatic analyses suggest that the unique ligand environment of PqqE may be relevant to its role in PQQ biosynthesis within an oxygen-dependent biosynthetic pathway.


Subject(s)
Bacterial Proteins/metabolism , Endopeptidases/metabolism , Iron/metabolism , Methylobacterium extorquens/chemistry , Sulfur/metabolism , Bacterial Proteins/chemistry , Biocatalysis , Crystallography, X-Ray , Endopeptidases/chemistry , Iron/chemistry , Methylobacterium extorquens/metabolism , Models, Molecular , Molecular Structure , Sulfur/chemistry
3.
J Biol Inorg Chem ; 24(6): 889-898, 2019 09.
Article in English | MEDLINE | ID: mdl-31463592

ABSTRACT

The formate dehydrogenase enzyme from Cupriavidus necator (FdsABG) carries out the two-electron oxidation of formate to CO2, but is also capable of reducing CO2 back to formate, a potential biofuel. FdsABG is a heterotrimeric enzyme that performs this transformation using nine redox-active cofactors: a bis(molybdopterin guanine dinucleotide) (bis-MGD) at the active site coupled to seven iron-sulfur clusters, and one equivalent of flavin mononucleotide (FMN). To better understand the pathway of electron flow in FdsABG, the reduction potentials of the various cofactors were examined through direct electrochemistry. Given the redundancy of cofactors, a truncated form of the FdsA subunit was developed that possesses only the bis-MGD active site and a singular [4Fe-4S] cluster. Electrochemical characterization of FdsABG compared to truncated FdsA shows that the measured reduction potentials are remarkably similar despite the truncation with two observable features at - 265 mV and - 455 mV vs SHE, indicating that the voltammetry of the truncated enzyme is representative of the reduction potentials of the intact heterotrimer. By producing truncated FdsA without the necessary maturation factors required for bis-MGD insertion, a form of the truncated FdsA that possesses only the [4Fe-4S] was produced, which gives a single voltammetric feature at - 525 mV, allowing the contributions of the molybdenum cofactor to be associated with the observed feature at - 265 mV. This method allowed for the deconvolution of reduction potentials for an enzyme with highly complex cofactor content to know more about the thermodynamic landscape of catalysis.


Subject(s)
Cupriavidus necator/enzymology , Cupriavidus necator/metabolism , Formate Dehydrogenases/metabolism , Catalysis , Coenzymes/metabolism , Cupriavidus necator/genetics , Flavin Mononucleotide/metabolism , Formate Dehydrogenases/chemistry , Formate Dehydrogenases/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Metalloproteins/metabolism , Molybdenum Cofactors , Oxidation-Reduction , Pteridines/metabolism
4.
Biochemistry ; 58(7): 940-950, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30628436

ABSTRACT

Mycofactocin is a putative redox cofactor and is classified as a ribosomally synthesized and post-translationally modified peptide (RiPP). Some RiPP natural products, including mycofactocin, rely on a radical S-adenosylmethionine (RS, SAM) protein to modify the precursor peptide. Mycofactocin maturase, MftC, is a unique RS protein that catalyzes the oxidative decarboxylation and C-C bond formation on the precursor peptide MftA. However, the number, chemical nature, and catalytic roles for the MftC [Fe-S] clusters remain unknown. Here, we report that MftC binds a RS [4Fe-4S] cluster and two auxiliary [4Fe-4S] clusters that are required for MftA modification. Furthermore, electron paramagnetic resonance spectra of MftC suggest that SAM and MftA affect the environments of the RS and Aux I cluster, whereas the Aux II cluster is unaffected by the substrates. Lastly, reduction potential assignments of individual [4Fe-4S] clusters by protein film voltammetry show that their potentials are within 100 mV of each other.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Bacterial Proteins/genetics , Catalysis , Catalytic Domain , Cysteine/chemistry , Electrochemical Techniques , Electron Spin Resonance Spectroscopy , Iron-Sulfur Proteins/genetics , Mycobacterium ulcerans/chemistry , Oxidation-Reduction , S-Adenosylmethionine/metabolism , Spectroscopy, Mossbauer
5.
Biochemistry ; 57(42): 6050-6053, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30272955

ABSTRACT

Enzymes in the S-adenosyl-l-methionine (AdoMet) radical enzyme superfamily are metalloenzymes that catalyze a wide variety of complex radical-mediated transformations with the aid of a [4Fe-4S] cluster, which is required for activation of AdoMet to generate the 5'-deoxyadenosyl radical to initiate the catalytic cycle. In addition to this cluster, some enzymes share an additional domain, the SPASM domain, that houses auxiliary FeS clusters whose functional significance is not clearly understood. The AdoMet radical enzyme Tte1186, which catalyzes a thioether cross-link in a cysteine rich peptide (SCIFF), has two auxiliary [4Fe-4S] clusters within a SPASM domain that are required for enzymatic activity but not for the generation of the 5'-deoxyadenosyl radical intermediate. Here we demonstrate the ability to measure independently the midpoint potentials of each of the three [4Fe-4S] clusters by employing Tte1186 variants for which only the first, second, or AdoMet binding cluster is bound. This allows, for the first time, assignment of reduction potentials for all clusters in an AdoMet radical enzyme with a SPASM domain. Our results show that the clusters have midpoint potentials that are within 100 mV of each other, suggesting that their electrochemical properties are not greatly influenced by the presence of the nearby clusters.


Subject(s)
Bacterial Proteins/chemistry , Firmicutes/enzymology , Iron-Sulfur Proteins/chemistry , S-Adenosylmethionine/chemistry , Amino Acid Motifs , Protein Domains
6.
Methods Enzymol ; 606: 319-339, 2018.
Article in English | MEDLINE | ID: mdl-30097097

ABSTRACT

While protein film electrochemistry (PFE) has proven to be an effective tool in the interrogation of redox cofactors and assessing the electrocatalytic activity of many different enzymes, recently it has been proven to be useful for the study of the redox potentials of the cofactors of AdoMet radical enzymes (AREs). In this chapter, we review the challenges and opportunities of examining the redox cofactors of AREs in a high level of detail, particularly for the deconvolution of redox potentials of multiple cofactors. We comment on how to best assess the electroactive nature of any given ARE, and we see that when applied well, PFE allows for not only determining redox potentials, but also determining proton-coupling and ligand-binding phenomena in the ARE superfamily.


Subject(s)
Coenzymes/metabolism , Enzyme Assays/methods , Enzymes/metabolism , S-Adenosylmethionine/metabolism , Coenzymes/chemistry , Electrochemistry , Free Radicals/metabolism , Ligands , Models, Molecular , Oxidation-Reduction , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...