Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(12): e0279519, 2022.
Article in English | MEDLINE | ID: mdl-36584151

ABSTRACT

Segmental bone defects present complex clinical challenges. Nonunion, malunion, and infection are common sequalae of autogenous bone grafts, allografts, and synthetic bone implants due to poor incorporation with the patient's bone. The current project explores the osteogenic properties of periosteum to facilitate graft incorporation. As tissue area is a natural limitation of autografting, mechanical strain was implemented to expand the periosteum. Freshly harvested, porcine periosteum was strained at 5 and 10% per day for 10 days with non-strained and free-floating samples serving as controls. Total tissue size, viability and histologic examination revealed that strain increased area to a maximum of 1.6-fold in the 10% daily strain. No change in tissue anatomy or viability via MTT or Ki67 staining and quantification was observed among groups. The osteogenic potential of the mechanical expanded periosteum was then examined in vivo. Human cancellous allografts were wrapped with 10% per day strained, fresh, free-floating, or no porcine periosteum and implanted subcutaneously into female, athymic mice. Tissue was collected at 8- and 16-weeks. Gene expression analysis revealed a significant increase in alkaline phosphatase and osteocalcin in the fresh periosteum group at 8-weeks post implantation compared to all other groups. Values among all groups were similar at week 16. Additionally, histological assessment with H&E and Masson-Goldner Trichrome staining showed that all periosteal groups outperformed the non-periosteal allograft, with fresh periosteum demonstrating the highest levels of new tissue mineralization at the periosteum-bone interface. Overall, mechanical expansion of the periosteum can provide increased area for segmental healing via autograft strategies, though further studies are needed to explore culture methodology to optimize osteogenic potential.


Subject(s)
Osteogenesis , Periosteum , Mice , Female , Humans , Animals , Swine , Periosteum/surgery , Transplantation, Homologous , Transplantation, Autologous , Bone Transplantation/methods
2.
J Am Assoc Lab Anim Sci ; 61(6): 644-649, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319080

ABSTRACT

Floor cleaning and disinfection are essential components of maintaining animal health status and meeting regulatory requirements in research vivaria. However, best practices for method, frequency, and evaluation techniques have not been established. Reuse of cotton string mop and bucket systems has been implicated in spreading contamination in the human hospital setting. We evaluated 4 different combinations of disinfectant and mop systems commonly used in rodent vivaria. Eight housing rooms were mopped a total of 4 times using one of the following methods: quaternary ammonium compound (QUAT) and cotton string mop (QC), QUAT and microfiber mop (QM), hydrogen peroxide disinfectant (HPD) and cotton string mop (HC), or HPD and microfiber mop (HM). ATP and RODAC samples of the floor were taken before and after mopping. The time to mop each room, floor drying time, and the amount of disinfectant used were recorded. The QC method was associated with significantly more bacterial contamination while all other methods significantly reduced bacterial contamination. The QC method performed significantly worse in reducing bacterial contamination as compared with all other methods when cotton mop heads were reused. All methods except QC significantly reduced ATP levels, with the HC and HM methods being significantly more effective at reducing ATP levels than the QC and QM methods. Costs were similar for the QC, QM, and HM methods. The results of this study indicate that reuse of cotton string mop heads with QUAT increases floor contamination while HPD is effective for up to 3 reuses. Single use microfiber mops were effective with both QUAT and HPD but did not result in more effective cleaning or disinfection than cotton string mops.


Subject(s)
Disinfectants , Disinfection , Humans , Animals , Disinfection/methods , Floors and Floorcoverings , Disinfectants/pharmacology , Quaternary Ammonium Compounds , Bacteria , Adenosine Triphosphate
3.
J Am Assoc Lab Anim Sci ; 60(4): 431-441, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34172106

ABSTRACT

Reuse of disposable personal protective equipment is traditionally discouraged, yet in times of heightened medical applications such as the SARS CoV-2 pandemic, it can be difficult to obtain. In this article we examine the reuse of disposable gowns with respect to still providing personnel protection. XR7, a fluorescent powder, was used to track contamination of gowns after manipulation of rodent cages. Mouse cages were treated with XR7 prior to manipulations. Disposable gowns were labeled for single person use and hung in common procedure spaces within the vivarium between usages. A simulated rack change of 140 cages was completed using XR7-treated cages. One individual changed all cages with a break occurring after the first 70 cages, requiring the gown to be removed and reused once. To simulate research activities, 5 individuals accessed 3 XR7-treated cages daily for 5 d. Each mouse in the XR7-treated cages was manipulated at least once before returning cages to the housing room. Disposable gowns were reused 5 times per individual. Gowns, gloves, clothing, bare arms, and hands were scanned for fluorescence before and after removing PPE. Fluorescence was localized to gloves and gown sleeves in closest contact with animals and caging. No fluorescence was detected on underlying clothing, or bare arms and hands after removing PPE. Fluorescence was not detected in procedure spaces where gowns were hung. The lack of fluorescence on personnel or surfaces indicate that gowns can be reused 1 time for routine husbandry tasks and up to 5 times for research personnel. A method for decontamination of used gowns using Vaporized Hydrogen Peroxide (VHP) was also validated for use in areas where animals are considered high risk such as quarantine, or for fragile immunocompromised rodent colonies.


Subject(s)
Animals, Laboratory , Disposable Equipment , Pandemics , Protective Clothing , Animal Technicians , Animals , Health Personnel , Housing, Animal , Humans , Mice , Pandemics/prevention & control , Personal Protective Equipment
4.
J Am Assoc Lab Anim Sci ; 60(4): 442-450, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34183092

ABSTRACT

Studies published in 1994 and 2000 established a temperature range of 143-180 °F for effective cage sanitization in animal facilities. These 2 studies were, respectively, theoretical and based on experiments using hot water to sanitize bacteria-coated test tubes. However, such experimental methods may not capture the practical advantages of modern washing technology or account for the routine use of detergent in cage wash. Moreover, these methods may not translate to the challenges of removing adhered debris and animal waste from the surfaces being sanitized. A sample of highly soiled cage bottoms, half of which were autoclaved with bedding to create challenging cleaning conditions, were processed at 6 combinations of wash and rinse cycles with 125 °F, 140 °F, and 180 °F water with detergent. All cycles were equipped with a data logging device to independently verify temperatures. After washing, cages underwent visual inspection and microbial sampling consisting of organic material detection using ATP detection and Replicate Organism Detection and Counting (RODAC) plates. Cages with any amount of visible debris failed inspection, as did cages that exceeded institutional sanitization thresholds. Results indicate that wash and rinse temperatures of 140 °F for a programmed wash duration of 450 s and rinse of 50 s effectively clean and disinfect both highly soiled and autoclaved cages. Accounting for both steam and electrical energy, these parameters result in an annual savings of $21,867.08 per washer on an equivalent run basis using the current institutional standard of 180 °F.


Subject(s)
Rodentia , Water , Animals , Housing, Animal , Sterilization , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...