Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ecol Appl ; 32(5): e2609, 2022 07.
Article in English | MEDLINE | ID: mdl-35366045

ABSTRACT

Foundation species, such as mangroves, saltmarshes, kelps, seagrasses, and oysters, thrive within suitable environmental envelopes as narrow ribbons along the land-sea margin. Therefore, these habitat-forming species and resident fauna are sensitive to modified environmental gradients. For oysters, many estuaries impacted by sea-level rise, channelization, and municipal infrastructure are experiencing saltwater intrusion and water-quality degradation that may alter reef distributions, functions, and services. To explore decadal-scale oyster-reef community patterns across a temperate estuary in response to environmental change, we resampled reefs in the Newport River Estuary (NRE) during 2013-2015 that had previously been studied during 1955-1956. We also coalesced historical NRE reef distribution (1880s-2015), salinity (1913-2015), and water-quality-driven shellfish closure boundary (1970s-2015) data to document environmental trends that could influence reef ecology and service delivery. Over the last 60-120 years, the entire NRE has shifted toward higher salinities. Consequently, oyster-reef communities have become less distinct across the estuary, manifest by 20%-27% lower species turnover and decreased faunal richness among NRE reefs in the 2010s relative to the 1950s. During the 2010s, NRE oyster-reef communities tended to cluster around a euhaline, intertidal-reef type more so than during the 1950s. This followed faunal expansions farther up estuary and biological degradation of subtidal reefs as NRE conditions became more marine and favorable for aggressive, reef-destroying taxa. In addition to these biological shifts, the area of suitable bottom on which subtidal reefs persist (contracting due to up-estuary intrusion of marine waters) and support human harvest (driven by water quality, eroding from up-estuary) has decreased by >75% since the natural history of NRE reefs was first explored. This "coastal squeeze" on harvestable subtidal oysters (reduced from a 4.5-km to a 0.75-km envelope along the NRE's main axis) will likely have consequences regarding the economic incentives for future oyster conservation, as well as the suite of services delivered by remaining shellfish reefs (e.g., biodiversity maintenance, seafood supply). More broadly, these findings exemplify how "squeeze" may be a pervasive concern for biogenic habitats along terrestrial or marine ecotones during an era of intense global change.


Subject(s)
Ostreidae , Salinity , Animals , Coral Reefs , Ecosystem , Seafood , Water Quality
2.
Mol Ecol ; 29(8): 1421-1435, 2020 04.
Article in English | MEDLINE | ID: mdl-32176403

ABSTRACT

Dispersal sets the fundamental scales of ecological and evolutionary dynamics and has important implications for population persistence. Patterns of marine dispersal remain poorly understood, partly because dispersal may vary through time and often homogenizes allele frequencies. However, combining multiple types of natural tags can provide more precise dispersal estimates, and biological collections can help to reconstruct dispersal patterns through time. We used single nucleotide polymorphism genotypes and otolith core microchemistry from archived collections of larval summer flounder (Paralichthys dentatus, n = 411) captured between 1989 and 2012 at five locations along the US East coast to reconstruct dispersal patterns through time. Neither genotypes nor otolith microchemistry alone were sufficient to identify the source of larval fish. However, microchemistry identified clusters of larvae (n = 3-33 larvae per cluster) that originated in the same location, and genetic assignment of clusters could be made with substantially more confidence. We found that most larvae probably originated near a biogeographical break (Cape Hatteras) and that larvae were transported in both directions across this break. Larval sources did not shift north through time, despite the northward shift of adult populations in recent decades. Our novel approach demonstrates that summer flounder dispersal is widespread throughout their range, on both intra- and intergenerational timescales, and may be a particularly important process for synchronizing population dynamics and maintaining genetic diversity during an era of rapid environmental change. Broadly, our results reveal the value of archived collections and of combining multiple natural tags to understand the magnitude and directionality of dispersal in species with extensive gene flow.


Subject(s)
Flounder , Animals , Fishes , Flounder/genetics , Gene Flow , Larva/genetics , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...