Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7988): 757-764, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968390

ABSTRACT

Extreme weather events perturb ecosystems and increasingly threaten biodiversity1. Ecologists emphasize the need to forecast and mitigate the impacts of these events, which requires knowledge of how risk is distributed among species and environments. However, the scale and unpredictability of extreme events complicate risk assessment1-4-especially for large animals (megafauna), which are ecologically important and disproportionately threatened but are wide-ranging and difficult to monitor5. Traits such as body size, dispersal ability and habitat affiliation are hypothesized to determine the vulnerability of animals to natural hazards1,6,7. Yet it has rarely been possible to test these hypotheses or, more generally, to link the short-term and long-term ecological effects of weather-related disturbance8,9. Here we show how large herbivores and carnivores in Mozambique responded to Intense Tropical Cyclone Idai, the deadliest storm on record in Africa, across scales ranging from individual decisions in the hours after landfall to changes in community composition nearly 2 years later. Animals responded behaviourally to rising floodwaters by moving upslope and shifting their diets. Body size and habitat association independently predicted population-level impacts: five of the smallest and most lowland-affiliated herbivore species declined by an average of 28% in the 20 months after landfall, while four of the largest and most upland-affiliated species increased by an average of 26%. We attribute the sensitivity of small-bodied species to their limited mobility and physiological constraints, which restricted their ability to avoid the flood and endure subsequent reductions in the quantity and quality of food. Our results identify general traits that govern animal responses to severe weather, which may help to inform wildlife conservation in a volatile climate.


Subject(s)
Body Size , Cyclonic Storms , Mammals , Animals , Altitude , Biodiversity , Carnivory , Conservation of Natural Resources , Diet/veterinary , Ecosystem , Extreme Weather , Floods , Forecasting , Herbivory , Mammals/anatomy & histology , Mammals/physiology , Mozambique
2.
Ecology ; 104(2): e3921, 2023 02.
Article in English | MEDLINE | ID: mdl-36415899

ABSTRACT

Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual-level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the "opportunity cost" of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high-quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck, Tragelaphus sylvaticus) in an African floodplain-savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS-collared animals (range 6-14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual-level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity-of-use index), and had higher-quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual-level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.


Subject(s)
Ecosystem , Herbivory , Animals , Diet/veterinary , Forests , Food
3.
Science ; 374(6574): 1496-1500, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34914507

ABSTRACT

Political, economic, and climatic upheaval can result in mass human migration across extreme terrain in search of more humane living conditions, exposing migrants to environments that challenge human tolerance. An empirical understanding of the biological stresses associated with these migrations will play a key role in the development of social, political, and medical strategies for alleviating adverse effects and risk of death. We model physiological stress associated with undocumented migration across a commonly traversed section of the southern border of the United States and find that locations of migrant death are disproportionately clustered within regions of greatest predicted physiological stress (evaporative water loss). Minimum values of estimated evaporative water loss were sufficient to cause severe dehydration and associated proximate causes of mortality. Integration of future climate predictions into models increased predicted physiological costs of migration by up to 34.1% over the next 30 years.


Subject(s)
Desert Climate , Human Migration , Mortality , Stress, Physiological , Undocumented Immigrants , Arizona , Child , Climate Change , Dehydration/epidemiology , Emigration and Immigration , Female , Heat-Shock Response , Humans , Male , Mexico , Models, Theoretical , Pregnancy , Risk Factors , Seasons
4.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28878054

ABSTRACT

In despotically driven animal societies, one or a few individuals tend to have a disproportionate influence on group decision-making and actions. However, global communication allows each group member to assess the relative strength of preferences for different options among their group-mates. Here, we investigate collective decisions by free-ranging African wild dog packs in Botswana. African wild dogs exhibit dominant-directed group living and take part in stereotyped social rallies: high energy greeting ceremonies that occur before collective movements. Not all rallies result in collective movements, for reasons that are not well understood. We show that the probability of rally success (i.e. group departure) is predicted by a minimum number of audible rapid nasal exhalations (sneezes), within the rally. Moreover, the number of sneezes needed for the group to depart (i.e. the quorum) was reduced whenever dominant individuals initiated rallies, suggesting that dominant participation increases the likelihood of a rally's success, but is not a prerequisite. As such, the 'will of the group' may override dominant preferences when the consensus of subordinates is sufficiently great. Our findings illustrate how specific behavioural mechanisms (here, sneezing) allow for negotiation (in effect, voting) that shapes decision-making in a wild, socially complex animal society.


Subject(s)
Behavior, Animal , Canidae/physiology , Decision Making , Sneezing , Social Behavior , Animals , Animals, Wild/physiology , Botswana , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...