Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 196: 429-439, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29324384

ABSTRACT

This paper uses fire statistics to show the importance of fire toxicity on fire deaths and injuries, and the importance of upholstered furniture and bedding on fatalities from unwanted fires. The aim was to compare the fire hazards (fire growth and smoke toxicity) using different upholstery materials. Four compositions of sofa-bed were compared: three meeting UK Furniture Flammability Regulations (FFR), and one using materials without flame retardants intended for the mainland European market. Two of the UK sofa-beds relied on chemical flame retardants to meet the FFR, the third used natural materials and a technical weave in order to pass the test. Each composition was tested in the bench-scale cone calorimeter (ISO 5660) and burnt as a whole sofa-bed in a sofa configuration in a 3.4 × 2.25 × 2.4 m3 test room. All of the sofas were ignited with a No. 7 wood crib; the temperatures and yields of toxic products are reported. The sofa-beds containing flame retardants burnt somewhat more slowly than the non-flame retarded EU sofa-bed, but in doing so produced significantly greater quantities of the main fire toxicants, carbon monoxide and hydrogen cyanide. Assessment of the effluents' potential to incapacitate and kill is provided showing the two UK flame retardant sofa-beds to be the most dangerous, followed by the sofa-bed made with European materials. The UK sofa-bed made only from natural materials (Cottonsafe®) burnt very slowly and produced very low concentrations of toxic gases. Including fire toxicity in the FFR would reduce the chemical flame retardants and improve fire safety.


Subject(s)
Flame Retardants/toxicity , Interior Design and Furnishings , Smoke , Beds/standards , Carbon Monoxide/toxicity , Fires/prevention & control , Gases/toxicity
2.
J Forensic Sci ; 59(1): 139-54, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24313226

ABSTRACT

A fire experiment conducted in a British 1950s-style house is described. Measurements of temperature, smoke, CO, CO2 , and O2 were taken in the Lounge, stairwell, and front and back bedrooms. The front bedroom door was wedged open, while the door to the back bedroom was wedged closed. Contrary to expectations and despite the relatively small fire load, analysis and hazard calculations show permeation of toxic fire gases throughout the property with lethal concentrations of effluent being measured at each sampling point. A generally poor state of repair and missing carpets in the upper story contributed to a high degree of gas and smoke permeation. The available egress time was calculated as the time before the main escape route became impassable. Given known human responses to fire, such an incident could have caused fatalities to sleeping or otherwise immobile occupants.

SELECTION OF CITATIONS
SEARCH DETAIL
...