Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 9(1): 81, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941276

ABSTRACT

Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a-/- mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a-/- basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a-/- Lyn-/- showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a-/- hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.


Subject(s)
Drug Delivery Systems/methods , Neuroacanthocytosis/drug therapy , Neuroacanthocytosis/enzymology , Protein Kinase Inhibitors/administration & dosage , src-Family Kinases/antagonists & inhibitors , Animals , Dasatinib/administration & dosage , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroacanthocytosis/genetics , Pyrimidines/administration & dosage , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...