Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(26): 266802, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004757

ABSTRACT

We explore the second order bilinear magnetoelectric resistance (BMER) effect in the d-electron-based two-dimensional electron gas (2DEG) at the SrTiO_{3}(111) surface. We find evidence of a spin-split band structure with the archetypal spin-momentum locking of the Rashba effect for the in-plane component. Under an out-of-plane magnetic field, we find a BMER signal that breaks the sixfold symmetry of the electronic dispersion, which is a fingerprint for the presence of a momentum-dependent out-of-plane spin component. Relativistic electronic structure calculations reproduce this spin texture and indicate that the out-of-plane component is a ubiquitous property of oxide 2DEGs arising from strong crystal field effects. We further show that the BMER response of the SrTiO_{3}(111) 2DEG is tunable and unexpectedly large.

2.
Phys Rev Lett ; 113(17): 177601, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25379937

ABSTRACT

We report on the formation of a two-dimensional electron gas (2DEG) at the bare surface of (111) oriented SrTiO3. Angle resolved photoemission experiments reveal highly itinerant carriers with a sixfold symmetric Fermi surface and strongly anisotropic effective masses. The electronic structure of the 2DEG is in good agreement with self-consistent tight-binding supercell calculations that incorporate a confinement potential due to surface band bending. We further demonstrate that alternate exposure of the surface to ultraviolet light and atomic oxygen allows tuning of the carrier density and the complete suppression of the 2DEG.

3.
Adv Mater ; 24(16): 2154-8, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22430985

ABSTRACT

Intrinsic topological insulators are realized by alloying Bi(2)Te(3) with Bi(2)Se(3). Angle-resolved photoemission and bulk transport measurements reveal that the Fermi level is readily tuned into the bulk bandgap. First-principles calculations of the native defect landscape highlight the key role of anti-site defects for achieving this, and predict optimal growth conditions to realize maximally resistive topological insulators.


Subject(s)
Alloys/chemistry , Bismuth/chemistry , Selenium/chemistry , Tellurium/chemistry , Electric Impedance
SELECTION OF CITATIONS
SEARCH DETAIL
...