Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 128(25): 8227-33, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16787087

ABSTRACT

Length-dependent helical propensities w(Ala)(n,T) at T = 10, 25, and 60 degrees C are assigned from t/c values and NMR 13C chemical shifts for series 1 peptides TrpLys(m)Inp2(t)Leu-Ala(n)(t)LeuInp2Lys(m)NH2, n = 15, 19, and 25, m = 5, in water. Van't Hoff analysis of w(Ala)(n,T) show that alpha-helix formation is primarily enthalpy-driven. For series 2 peptides Ac-Trp Lys5Inp2(t)Leu-(beta)AspHel-Ala(n)-beta-(t)LeuInp2Lys5NH2, n = 12 and 22, which contain exceptionally helical Ala(n) cores, protection factor-derived fractional helicities FH are assigned in the range 10-30 degrees C in water and used to calibrate temperature-dependent CD ellipticities [theta](lambda,H,n,T). These are applied to CD data for series 1 peptides, 12 < or = n < or = 45, to confirm the w(Ala)(n,T) assignments at T = 25 and 60 degrees C. The [theta](lambda,H,n,T) are temperature dependent within the wavelength region, 222 +/- 12 nm, and yield a temperature correction for calculation of FH from experimental values of [theta](222,n,T,Exp).


Subject(s)
Models, Chemical , Peptides/chemistry , Peptides/chemical synthesis , Temperature , Circular Dichroism , Computer Simulation , Magnetic Resonance Spectroscopy , Molecular Structure , Protein Structure, Secondary , Thermodynamics , Water/chemistry
2.
J Am Chem Soc ; 127(48): 16961-8, 2005 Dec 07.
Article in English | MEDLINE | ID: mdl-16316242

ABSTRACT

Measured at 2 degrees C in water, NMR chemical shifts of (13)C=O labeled central alanine residues of peptides W-Lys(5)-(t)L(3)-Ala(n)-(t)L(3)-Lys(5)NH(2), n = 9, 11, 13, 15, 19 and W-Lys(5)-(t)L(3)-a-Ala(n)-A-Inp-(t)L(2)-Lys(5)NH(2) (a = D-Ala; (t)L = tert-leucine; Inp = 4-carboxypiperidine) are used to assign jt(L) and ct(L), the N- and C-terminal (t)L capping parameters and length-dependent values for w(Ala)(n), the alanine helical propensity for Ala(n) peptides. These parameters allow Lifson-Roig characterization of the stabilities of Ala(n)() helices in water. To facilitate chemical shift characterization, different (13)C/(12)C ratios are incorporated into specific Ala sites to code up to six residue sites per peptide. Large left/right chemical shift anisotropies are intrinsic to helical polyalanines, and a correcting L-R-based model is introduced. Capping parameters jt(L) = ct(L) lie in the range of 0.3 to 0.5; the (t)L residues are thus moderately helix-destabilizing. For helical conformations of lengths shorter than eight residues, assigned values for w(Ala) approach 1.0 but increase monotonically with length to a value of 1.59 for w(Ala)(19).


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Peptides/chemistry , Alanine/chemistry , Carbon Isotopes , Circular Dichroism , Models, Chemical , Protein Structure, Secondary , Water/chemistry
3.
J Am Chem Soc ; 127(6): 1690-704, 2005 Feb 16.
Article in English | MEDLINE | ID: mdl-15701003

ABSTRACT

NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer (beta)Asp-Hel and C-capped by beta-aminoalanine beta and that are studied in water at 2 degrees C, pH 1-8. NMR analysis yields a structural characterization of the peptide Ac(beta)AspHelAla(8)betaNH(2) and selected members of one (beta)AspHelAla(n)beta series. At pH > 4.5 the (beta)AspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal beta-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly (13)C- and (15)N-labeled Ala(8) and Ala(12) peptides define Ala(n) hydrogen bonding signatures as alpha-helical without detectable 3(10) character. Relative NH-->ND exchange rates yield site protection factors PF(i) that define uniquely high fractional helicities FH for the peptide Ala(n) regions. These Ala(n) calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first (13)C NMR chemical shifts, (3)J(HNH)(alpha) coupling constants, and CD ellipticities [theta(Molar)](lambda,n) characteristic of a fully helical alanine within an Ala(n) context. CD data are used to assign parameters X and [theta](lambda,infinity), required for rigorous calculation of FH values from CD ellipticities.


Subject(s)
Circular Dichroism/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Peptides/chemistry , Calibration , Carbon Isotopes , Circular Dichroism/standards , Hydrogen-Ion Concentration , Models, Molecular , Protein Structure, Secondary , Protons , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...