Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 98(5): 2867-74, 2015 May.
Article in English | MEDLINE | ID: mdl-25726115

ABSTRACT

The present work evaluated the effect of processing on the antiproliferative activities of milk fat globule membrane (MFGM) extracts. The antiproliferative activity on human adenocarcinoma HT-29 cells of untreated MFGM extracts were compared with those extracted from pasteurized cream, thermally treated cream, or cream subjected to pulsed electrical field (PEF) processing. The PEF with a 37 kV/cm field strength applied for 1,705µs at 50 and 65°C was applied to untreated cream collected from a local dairy. Heating at 50 or 65°C for 3min (the passage time in the PEF chamber) was also tested to evaluate the heating effect during PEF treatments. The MFGM extracted from pasteurized cream did not show an antiproliferative activity. On the other hand, isolates from PEF-treated cream showed activity similar to that of untreated samples. It was also shown that PEF induced interactions between ß-lactoglobulin and MFGM proteins at 65°C, whereas the phospholipid composition remained unaltered. This work demonstrates the potential of PEF not only a means to produce a microbiologically safe product, but also as a process preserving the biofunctionality of the MFGM.


Subject(s)
Antineoplastic Agents/radiation effects , Cell Proliferation/drug effects , Electromagnetic Fields , Glycolipids/radiation effects , Glycoproteins/radiation effects , Antineoplastic Agents/pharmacology , Glycolipids/pharmacology , Glycoproteins/pharmacology , HT29 Cells , Humans , Lipid Droplets , Membranes/radiation effects
2.
Int J Food Microbiol ; 144(3): 379-86, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21078532

ABSTRACT

Thermal pasteurisation (TP) is the established food technology for commercial processing of milk. However, degradation of valuable nutrients in milk and its sensory characteristics occurs during TP due to substantial heat exposure. Pulsed electric fields (PEF) and microfiltration (MF) both represent emerging food processing technologies allowing gentle milk preservation at lower temperatures and shorter treatment times for similar, or better, microbial inactivation and shelf stability when applied in a hurdle approach compared to TP. Incubated raw milk was used as an inoculum for the enrichment of skim milk with native microorganisms before PEF, MF, and TP processing. Inoculated milk was PEF-processed at electric field strengths between 16 and 42 kV/cm for treatment times from 612 to 2105 µs; accounting for energy densities between 407 and 815 kJ/L, while MF was applied with a transmembrane flux of 660 L/h m². Milk was TP-treated at 75°C for 24 s. Comparing PEF, MF, and TP for the reduction of the native microbial load in milk led to a 4.6 log10 CFU/mL reduction in count for TP, which was similar to 3.7 log10 CFU/mL obtained by MF (P≥0.05), and more effective than the 2.5 log10 CFU/mL inactivation achieved by PEF inactivation (at 815 kJ/L (P<0.05)). Combined processing with MF followed by PEF (MF/PEF) produced a 4.1 (at 407 and 632 kJ/L), 4.4 (at 668 kJ/L) and 4.8 (at 815 kJ/L) log10 CFU/mL reduction in count of the milk microorganisms, which was comparable to that of TP (P≥0.05). Reversed processing (PEF/MF) achieved comparable reductions of 4.9, 5.3 and 5.7 log10 CFU/mL (at 407, 632 and 668 kJ/L, respectively (P≥0.05)) and a higher inactivation of 7.1 log10 (at 815 kJ/mL (P<0.05)) in milk than for TP. Microbial shelf life of PEF/MF-treated (815 kJ/L) and TP-treated milk stored at 4°C was analysed over 35 days for total aerobic; enterobacteria; yeasts and moulds; lactobacilli; psychrotroph; thermoduric psychrotroph, mesophilic, and thermophilic; and staphylococci counts. For both PEF/MF and TP-treated milk an overall shelf stability of 7 days was observed based on total aerobic counts (P≥0.05). Milk hurdle processing with PEF/MF at its most effective treatment parameters produced greater microbial inactivation and overall similar shelf stability at lower processing temperatures compared to TP. With higher field strength, shorter treatment time, larger energy density, and rising temperature the efficacy of PEF/MF increased contrary to MF/PEF. Thus, PEF/MF represents a potential alternative for 'cold' pasteurisation of milk with improved quality.


Subject(s)
Electricity , Filtration , Food Microbiology/methods , Food Preservation/methods , Microbial Viability , Milk , Temperature , Animals , Bacterial Load , Colony Count, Microbial , Food Handling/methods , Milk/microbiology , Milk/standards
3.
J Appl Microbiol ; 106(1): 241-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19054228

ABSTRACT

AIMS: The impact of a combined hurdle treatment of heat and pulsed electric fields (PEF) was studied on native microbiota used for the inoculation of low-fat ultra-high temperature (UHT) milk and whole raw milk. Microbiological shelf-life of the latter following hurdle treatment or thermal pasteurization was also investigated. METHODS AND RESULTS: UHT milk was preheated to 30 degrees C, 40 degrees C or 50 degrees C over a 60-s period, pulsed for 50 micros or 60 micros at a field strength of 40 kV cm(-1) or for 33 micros at 50 kV cm(-1). Heat and PEF reduced the microbial count by a maximum of 6.4 log in UHT milk (50 degrees C; 50 kV cm(-1), 33 micros) compared to 6.0 log (P > or = 0.05) obtained by thermal pasteurization (26 s, 72 degrees C). When raw milk was treated with a combination of hurdles (50 degrees C; 40 kV cm(-1), 60 micros) a 6.0 log inactivation of microbiota was achieved and microbiological milk shelf-life was extended to 21 days under refrigeration (4 degrees C) vs 14 days in thermally pasteurized milk. Native microbiota was decreased by 6.7 log following conventional pasteurization. CONCLUSIONS: The findings suggest that heat and PEF achieved similar inactivation of native microbiota in milk and longer stabilization of microbiological shelf-life than thermal pasteurization. SIGNIFICANCE AND IMPACT OF THE STUDY: A hurdle approach of heat and PEF could represent a valid milk processing alternative to conventional pasteurization. Hurdle treatment might also preserve native milk quality better due to less thermal exposure.


Subject(s)
Electricity , Food Preservation/methods , Hot Temperature , Milk/microbiology , Animals , Colony Count, Microbial , Food Handling/methods , Food Microbiology , Time Factors
4.
J Food Sci ; 73(8): M395-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19019120

ABSTRACT

Moderate heat in combination with pulsed electric fields (PEF) was investigated as a potential alternative to thermal pasteurization of a tropical fruit smoothie based on pineapple, banana, and coconut milk, inoculated with Escherichia coli K12. The smoothie was heated from 25 degrees C to either 45 or 55 degrees C over 60 s and subsequently cooled to 10 degrees C. PEF was applied at electric field strengths of 24 and 34 kV/cm with specific energy inputs of 350, 500, and 650 kJ/L. Both processing technologies were combined using heat (45 or 55 degrees C) and the most effective set of PEF conditions. Bacterial inactivation was estimated on standard and NaCl-supplemented tryptone soy agar (TSA) to enumerate sublethally injured cells. By increasing the temperature from 45 to 55 degrees C, a higher reduction in E. coli numbers (1 compared with 1.7 log(10) colony forming units {CFU} per milliliter, P < 0.05) was achieved. Similarly, as the field strength was increased during stand-alone PEF treatment from 24 to 34 kV/cm, a greater number of E. coli cells were inactivated (2.8 compared with 4.2 log(10) CFU/mL, P < 0.05). An increase in heating temperature from 45 to 55 degrees C during a combined heat/PEF hurdle approach induced a higher inactivation (5.1 compared with 6.9 log(10) CFU/mL, respectively [P < 0.05]) with the latter value comparable to the bacterial reduction of 6.3 log(10) CFU/mL (P> or = 0.05) achieved by thermal pasteurization (72 degrees C, 15 s). A reversed hurdle processing sequence did not affect bacterial inactivation (P> or = 0.05). No differences were observed (P> or = 0.05) between the bacterial counts estimated on nonselective and selective TSA, suggesting that sublethal cell injury did not occur during single PEF treatments or combined heat/PEF treatments.


Subject(s)
Beverages/microbiology , Escherichia coli K12/isolation & purification , Food Preservation/methods , Fruit/microbiology , Hot Temperature , Ananas/microbiology , Citrus sinensis/microbiology , Cocos/microbiology , Colony Count, Microbial , Electricity , Escherichia coli K12/growth & development , Food Handling/methods , Malus/microbiology , Musa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...