Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 219: 1131-1139, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27616650

ABSTRACT

Microplastics have been reported everywhere around the globe. With very limited human activities, the Arctic is distant from major sources of microplastics. However, microplastic ingestions have been found in several Arctic marine predators, confirming their presence in this region. Nonetheless, existing information for this area remains scarce, thus there is an urgent need to quantify the contamination of Arctic marine waters. In this context, we studied microplastic abundance and composition within the zooplankton community off East Greenland. For the same area, we concurrently evaluated microplastic contamination of little auks (Alle alle), an Arctic seabird feeding on zooplankton while diving between 0 and 50 m. The study took place off East Greenland in July 2005 and 2014, under strongly contrasted sea-ice conditions. Among all samples, 97.2% of the debris found were filaments. Despite the remoteness of our study area, microplastic abundances were comparable to those of other oceans, with 0.99 ± 0.62 m-3 in the presence of sea-ice (2005), and 2.38 ± 1.11 m-3 in the nearby absence of sea-ice (2014). Microplastic rise between 2005 and 2014 might be linked to an increase in plastic production worldwide or to lower sea-ice extents in 2014, as sea-ice can represent a sink for microplastic particles, which are subsequently released to the water column upon melting. Crucially, all birds had eaten plastic filaments, and they collected high levels of microplastics compared to background levels with 9.99 and 8.99 pieces per chick meal in 2005 and 2014, respectively. Importantly, we also demonstrated that little auks took more often light colored microplastics, rather than darker ones, strongly suggesting an active contamination with birds mistaking microplastics for their natural prey. Overall, our study stresses the great vulnerability of Arctic marine species to microplastic pollution in a warming Arctic, where sea-ice melting is expected to release vast volumes of trapped debris.


Subject(s)
Birds , Diet , Feeding Behavior , Ice Cover , Oceans and Seas , Plastics/adverse effects , Water Pollution/adverse effects , Animals , Arctic Regions , Charadriiformes , Diving , Eating , Environmental Monitoring , Freezing , Global Warming , Greenland , Particle Size , Plastics/analysis , Seawater/chemistry , Water Pollution/analysis , Zooplankton
2.
Environ Sci Technol ; 48(13): 7280-8, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24901673

ABSTRACT

We show 2008 seasonal trends of total and monomethyl mercury (THg and MeHg, respectively) in herbivorous (Calanus hyperboreus) and predatory (Chaetognaths, Paraeuchaeta glacialis, and Themisto abyssorum) zooplankton species from the Canadian High Arctic (Amundsen Gulf and the Canadian Beaufort Sea) in relation to ambient seawater and diet. It has recently been postulated that the Arctic marine environment may be exceptionally vulnerable to toxic MeHg contamination through postdepositional processes leading to mercury transformation and methylation. Here, we show that C. hyperboreus plays a hitherto unrecognized central role in mercury transformation while, itself, not manifesting inordinately high levels of THg compared to its prey (pelagic particulate organic matter (POM)). Calanus hyperboreus shifts Hg from mainly inorganic forms in pelagic POM (>99.5%) or ambient seawater (>90%) to primarily organic forms (>50%) in their tissue. We calculate that annual dietary intake of MeHg could supply only ∼30% of the MeHg body burden in C. hyperboreus and, thus, transformation within the species, perhaps mediated by gut microbial communities, or bioconcentration from ambient seawater likely play overriding roles. Seasonal THg trends in C. hyperboreus are variable and directly controlled by species-specific physiology, e.g., egg laying and grazing. Zooplankton that prey on species such as C. hyperboreus provide a further biomagnification of MeHg and reflect seasonal trends observed in their prey.


Subject(s)
Environmental Exposure/analysis , Food Chain , Mercury/metabolism , Amphipoda/metabolism , Animals , Arctic Regions , Biotransformation , Canada , Copepoda/metabolism , Environmental Monitoring , Fishes , Geography , Herbivory , Methylmercury Compounds/analysis , Organic Chemicals/analysis , Particulate Matter/analysis , Predatory Behavior , Seasons , Seawater/chemistry , Ships , Water Pollutants, Chemical/analysis , Zooplankton/metabolism
3.
Environ Sci Technol ; 47(9): 4155-63, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23570325

ABSTRACT

Like most zooplankton, Calanus hyperboreus undergoes seasonal migration spending late spring and summer grazing at the surface and the rest of the year in diapause at depth. As a result, in the Arctic Ocean this copepod resides for part of the year in the hexachlorocyclohexane (HCH) enriched surface water and for part of the year at depth where HCH undergoes significant microbial degradation resulting in far lower concentrations (~3 times for α-HCH). We collected C. hyperboreus from summer and winter from the Amundsen Gulf and measured their α-HCH concentrations, enantiomeric compositions, and bioaccumulation factors (BAFs) to investigate how this copepod responds to the change in exposure to α-HCH. C. hyperboreus collected in winter were also cultured for 5 weeks under surface water conditions without feeding to investigate bioconcentration dynamics following spring ascent. Concentration of α-HCH was 2-3 times higher in individuals from the summer than those from the winter. Log BAF from the summer (feeding period) does not exceed log BCF (bioconcentration factor) from the culturing experiment (no feeding) suggesting that α-HCH concentration in C. hyperboreus is maintained through equilibration rather than feeding. After the spring ascent from deep waters, C. hyperboreus approach equilibrium partitioning with the higher surface water concentrations of α-HCH within 3-4 weeks with about 60% of bioconcentration taking place in the first week. The C. hyperboreus α-HCH chiral signature also reflects ambient seawater and can therefore be used as a determinant of residence depth. Even though a single cycle of seasonal migration does not result in a significant redistribution of α-HCH in the water column, this process could have a significant cumulative effect over longer time scales with particular local importance where the zooplankton biomass is high and the ocean depth is great enough to provide substantial vertical concentration gradients.


Subject(s)
Copepoda/metabolism , Hexachlorocyclohexane/metabolism , Seasons , Animals , Arctic Regions , Chromatography, Gas , Female
4.
Chemosphere ; 62(10): 1697-708, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16139327

ABSTRACT

Samples of zooplankton and suspended matter were collected using a Bongo net (0.33/0.50 mm mesh net), and Nucleopore filters, respectively, from the Southern Baltic off Poland. Major classes of zooplankton, and selected heavy metals (Fe, Co, Ni, Mn, Pb, Cd, Cu, Zn, Cr) were determined in the collected samples. Concentrations of heavy metals in zooplankton were corrected for metals contributed by particulate matter adhering to zooplankton organisms. Heavy metals levels measured in nearshore samples (Bay of Gdansk, Pomeranian Bay) were higher than those in the samples from the open sea. The only exception was cadmium exhibiting larger concentrations in the offshore as compared to the nearshore samples (0.8 vs. 1.3 microg/g d.w.). This was attributed to decreased concentrations, of both dissolved and particulate cadmium, caused by algal bloom. Larger concentrations of heavy metals in the Bay of Gdansk in comparison with the Pomeranian Bay (e.g. Cd-1.3 vs. 0.8 microg/g, Cu-20.5 vs. 8.3 microg/g, Pb-12.9 vs. 1.2 microg/g, Cr-12.4 vs. 1.4 microg/g) were attributed to the direct discharge of the Vistula river to the Bay of Gdansk, while the Pomeranian Bay receives the Odra river runoff indirectly, via the Szczecin Lagoon. The nonlinear estimation of the data set was used to evaluate concentrations of heavy metals in Copepoda and Cladocera. Copepoda proved to be enriched with heavy metals in comparison with Cladocera.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Zooplankton/metabolism , Animals , Metals, Heavy/pharmacokinetics , Poland , Water Pollutants, Chemical/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...