Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(41)2020 Oct.
Article in English | MEDLINE | ID: mdl-33036966

ABSTRACT

Carbonatites and associated rocks are the main source of rare earth elements (REEs), metals essential to modern technologies. REE mineralization occurs in hydrothermal assemblages within or near carbonatites, suggesting aqueous transport of REE. We conducted experiments from 1200°C and 1.5 GPa to 200°C and 0.2 GPa using light (La) and heavy (Dy) REE, crystallizing fluorapatite intergrown with calcite through dolomite to ankerite. All experiments contained solutions with anions previously thought to mobilize REE (chloride, fluoride, and carbonate), but REEs were extensively soluble only when alkalis were present. Dysprosium was more soluble than lanthanum when alkali complexed. Addition of silica either traps REE in early crystallizing apatite or negates solubility increases by immobilizing alkalis in silicates. Anionic species such as halogens and carbonates are not sufficient for REE mobility. Additional complexing with alkalis is required for substantial REE transport in and around carbonatites as a precursor for economic grade-mineralization.

2.
J Environ Manage ; 249: 109353, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31493685

ABSTRACT

Rare earth elements (REE), including neodymium, praseodymium, and dysprosium are used in a range of low-carbon technologies, such as electric vehicles and wind turbines, and demand for these REE is forecast to grow. This study demonstrates that a process simulation-based life cycle assessment (LCA) carried out at the early stages of a REE project, such as at the pre-feasibility stage, can inform subsequent decision making during the development of the project and help reduce its environmental impacts. As new REE supply chains are established and new mines are opened. It is important that the environmental consequences of different production options are examined in a life cycle context in order that the environment footprint of these raw materials is kept as low as possible. Here, we present a cradle-to-gate and process simulation-based life cycle assessment (LCA) for a potential new supply of REE at Songwe Hill in Malawi. We examine different project options including energy selection and a comparison of on-site acid regeneration versus virgin acid consumption which were being considered for the project. The LCA results show that the global warming potential of producing 1 kg of rare earth oxide (REO) from Songwe Hill is between 17 and 87 kg CO2-eq. A scenario that combines on-site acid regeneration with off-peak hydroelectric and photovoltaic energy gives the lowest global warming potential and performs well in other impact categories. This approach can equally well be applied to all other types of ore deposits and should be considered as a routine addition to all pre-feasibility studies.


Subject(s)
Metals, Rare Earth , Global Warming , Malawi , Minerals , Neodymium
3.
Adv Colloid Interface Sci ; 265: 14-28, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30711795

ABSTRACT

Apatite subspecies depend on their halogen and hydroxyl content; chlorapatite, hydroxylapatite and fluorapatite, with additional substitution of other elements within the lattice such as rare earth elements (REE), sodium, strontium and manganese also possible. Rare earth elements are vital to green and emerging technologies, with demand set to outstrip supply. Apatite provides a possible future source of REE. Processing rare earth deposits is often complex, with surface behaviour having a significant effect on the optimization of a process flow sheet. The effect of enrichment of natural apatite and the doping of synthetic apatite on surface behaviour can be determined by measuring the zeta potential and the isoelectric point of the mineral. In this paper, we review zeta potential studies of natural and synthetic apatite to determine the effect of elemental enrichment on surface behaviour. Fifty three studies of natural apatite and forty four studies of synthetic apatite were reviewed. The isoelectric point of apatite varied from pH 1 to pH 8.7, with studies of apatite specified to be >90% pure reducing the variation to pH 3 to pH 6.5. Of the four studies of rare earth enriched apatite found, three had IEP values between pH 3 and pH 4. A study of synthetic apatite showing enrichment of between 1 and 10% by the REE europium does not affect surface behaviour. However, no studies were found that investigated the effect of common REE processing reagents on REE enriched apatite zeta potentials. Therefore, in addition to comparing previous studies we also therefore present new zeta potential measurements of apatite from a REE enriched deposit under water and common flotation collector conditions. The IEP value of this apatite under water conditions was at pH 3.6, shifting to <3.5 under both hydroxamic acid and betacol conditions. When compared to previous studies, the behaviour of REE enriched apatite under collector conditions is similar to non-REE apatite. This result could be important for future processing of apatite enriched with REE, and therefore global apatite and rare earth supply.

4.
Contrib Mineral Petrol ; 172(11): 96, 2017.
Article in English | MEDLINE | ID: mdl-32009662

ABSTRACT

Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8-15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302-0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C - 3.5 to - 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C -5.2 to -6.0‰; 87Sr/86Sr 0.70296-0.70298) is not directly linked with the REE mineralisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...