Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 62(5): e0002824, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639489

ABSTRACT

The mpox outbreak, caused by monkeypox virus (MPXV), accelerated the development of molecular diagnostics. In this study, we detail the evaluation of the Research Use Only (RUO) NeuMoDx MPXV assay by multiple European and US sites. The assay was designed and developed by Qiagen for the NeuMoDx Molecular Systems. Primers and probes were tested for specificity and inclusivity in silico. The analytical sensitivity of the assay was determined by testing dilutions of synthetic and genomic MPXV DNA. A total of 296 clinical samples were tested by three sites; the Johns Hopkins University (US), UZ Gent (Belgium, Europe), and Hospital Universitario San Cecilio (Spain, Europe). The analytical sensitivity of the assay was 50 copies/mL for both clades I and II. The assay showed 100% in silico identity for 80 clade I and 99.98% in silico identity for 5,162 clade II genomes. Clade II primers and probes showed 100% in silico specificity; however, identity of at least one of the two sets of clade I primers and probes with variola, cowpox, camelpox, and vaccinia viruses was noticed. The clinical validation showed sensitivity of 99.21% [95% confidence interval (CI): 95.66-99.98%] and specificity of 96.64% (95% CI: 91.62-99.08%) for lesion swab samples. The NeuMoDx MPXV Test shows acceptable analytical and clinical performance. The assay improves the laboratory's workflow as it consolidates nucleic acid extraction, PCR, data analysis, and interpretation and can be interfaced. The Test Strip can differentiate clades I and II, which has important laboratory safety implications. IMPORTANCE: In this manuscript, we provide detailed in silico analysis and clinical evaluation of the assay using a large cohort of clinical samples across three academic centers in Europe and the United States. Because the assay differentiates MPXV clades I and II, this manuscript is timely due to the current need to rule out the regulated clade I by diagnostic clinical laboratories. In December 2023, and due to first report of cases of sexually transmitted clade I infections in the Democratic Republic of the Congo, when generic assays that do not differentiate the clades are used, samples are considered regulated. The assay meets the need of full automation and has a marked positive impact on the laboratory workflow.


Subject(s)
Molecular Diagnostic Techniques , Monkeypox virus , Mpox (monkeypox) , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Humans , Monkeypox virus/genetics , Monkeypox virus/isolation & purification , Monkeypox virus/classification , Real-Time Polymerase Chain Reaction/methods , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/virology , Molecular Diagnostic Techniques/methods , Europe , United States , Automation, Laboratory/methods , DNA Primers/genetics , Belgium
2.
Aust J Rural Health ; 30(6): 719-729, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36018893

ABSTRACT

OBJECTIVE: To explore participant experiences of an online co-design process to develop a web-based preventative mental health and well-being intervention targeting primary producers in rural Australia. SETTING: Rural Victoria, Australia. PARTICIPANTS: Participants from a primary producer background, including horticulture, fisheries, animal cultivation and farm consultancy, were eligible for the study if they had participated in both the co-design and beta testing processes for a primary producer platform. DESIGN: A qualitative study using semi-structured phone-based interviews was undertaken. A reflexive inductive approach to data analysis was employed to develop themes. RESULTS: Eleven participants were interviewed, with an average age of 51 years, of which 7 were female. Five main themes were developed. These included: (1) participant diversity, (2) impact of online delivery on co-design participation, (3) experiences of the co-design process, (4) maintaining a shared vision and goals and (5) acting on the co-design recommendations. Use of online methods was a clear enabler to engage participants who were geographically dispersed and offers an alternative to more conventional approaches to co-design using face-to-face methods. Some aspects of participant engagement may need a greater focus when conducted online compared with face-to-face. CONCLUSIONS: Using an online co-design method to develop a preventative mental health and well-being web-based platform for primary producers was novel. Findings address a gap in the literature around the experience of participants engaging in a co-design process and identify opportunities to improve participant engagement and experience with the online format.


Subject(s)
Mental Health , Humans , Female , Male , Qualitative Research , Victoria
3.
J Clin Virol Plus ; 2(2): None, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35755957

ABSTRACT

Background: Infections by several DNA viruses can severely impact outcomes in paediatric immunocompromised patients. Current testing, which is generally limited to singleplex qPCR assays, can miss both common and rarer viruses if they are not targeted. Objectives: To evaluate the performance of the Galileo Viral Panel (Galileo), a sample-to-result shotgun metagenomics platform for the detection and quantification of 12 DNA viruses, compared to standard of care qPCR assays. Study design: A clinical performance evaluation was carried out using 43 prospectively collected EDTA plasma samples positive for one or more DNA viruses. Agreement between assays was assessed by overall, positive, and negative percent agreement, as well as quantitative agreement by linear regression and Bland-Altman analysis. Results: Overall positive percent agreement was 84% (95% CI: 76%-90%), and negative percent agreement was 95% (95% CI: 92%-97%). There was a high correlation between Galileo and qPCR for ADV, CMV, EBV, and VZV (R2  = 0.91) and a mean difference by Bland Altman of -0.43 log10 IU or cp/ml (95% limits of agreement, -1.37 to 0.51). In addition, there was a high correlation between Galileo Signal Score and qPCR for TTV (R2  = 0.85). Conclusion: We observed high qualitative and quantitative agreement between qPCR and Galileo. Galileo identified additional viruses that were not tested with routine qPCR and could impact clinical outcomes.

4.
J Med Virol ; 87(1): 125-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24788593

ABSTRACT

Nucleic acid extraction of clinical samples is accepted as a key requirement in molecular diagnostics. At Barts Health NHS Trust, swabs taken from patients with clinical suspicion of HSV infection were routinely extracted on the Qiagen MDx BioRobot prior to testing with a real-time triplex PCR for HSV1, HSV2, and VZV. The aim of this study was to adapt an existing HSV1/HSV2/VZV real-time PCR by replacing VZV with phocine herpesvirus 1 (PhHV) as an internal control (IC) and evaluate whether this adapted assay required the nucleic acid extraction step for predominantly genital swabs. First 313 non-extracted and extracted swabs were tested in parallel with the existing triplex HSV1/HSV2/VZV real-time PCR. The second stage involved testing 176 non-extracted swabs using a triplex real-time PCR for HSV1, HSV2, and PhHV and comparing the results with the samples extracted and tested by the original triplex assay. The results correlated well when the existing assay was used, with only three non-extracted samples that would have been reported as negative compared to the extracted sample result (Cq s 33, 39, 35-two samples HSV1, one sample HSV2). In the evaluation using the adapted assay containing the IC, two of 176 samples were discordant, where a HSV negative non-extracted sample result would have been reported differently to the extracted sample result (Cq s 32, 33-both HSV1). This study demonstrated that it is feasible to test non-extracted swabs for HSV in a real-time PCR that includes an IC. J. Med. Virol. 87: 125-129, 2015. © 2014 Wiley Periodicals, Inc.


Subject(s)
Herpes Genitalis/diagnosis , Herpesvirus 1, Human/isolation & purification , Herpesvirus 2, Human/isolation & purification , Herpesvirus 3, Human/isolation & purification , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Female , Herpes Genitalis/virology , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/genetics , Herpesvirus 3, Human/genetics , Humans , Male , Multiplex Polymerase Chain Reaction/methods , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...