Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
5.
Mol Cancer Ther ; 8(8): 2221-31, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19671764

ABSTRACT

Lung cancer is the leading cause of cancer deaths in the United States. Current therapies are inadequate. Histone deacetylase inhibitors (HDACi) are a recently developed class of anticancer agents that cause increased acetylation of core histones and nonhistone proteins leading to modulation of gene expression and protein activity involved in cancer cell growth and survival pathways. We examined the efficacy of the HDACi panobinostat (LBH589) in a wide range of lung cancers and mesotheliomas. Panobinostat was cytotoxic in almost all 37 cancer cell lines tested. IC(50) and LD(50) values were in the low nmol/L range (4-470 nmol/L; median, 20 nmol/L). Small cell lung cancer (SCLC) cell lines were among the most sensitive lines, with LD(50) values consistently <25 nmol/L. In lung cancer and mesothelioma animal models, panobinostat significantly decreased tumor growth by an average of 62% when compared with vehicle control. Panobinostat was equally effective in immunocompetent and severe combined immunodeficiency mice, indicating that the inhibition of tumor growth by panobinostat was not due to direct immunologic effects. Panobinostat was, however, particularly effective in SCLC xenografts, and the addition of the chemotherapy agent etoposide augmented antitumor effects. Protein analysis of treated tumor biopsies revealed elevated amounts of cell cycle regulators such as p21 and proapoptosis factors, such as caspase 3 and 7 and cleaved poly[ADP-ribose] polymerase, coupled with decreased levels of antiapoptotic factors such as Bcl-2 and Bcl-X(L). These studies together suggest that panobinostat may be a useful adjunct in the treatment of thoracic malignancies, especially SCLC.


Subject(s)
Carcinoma, Small Cell/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Carcinoma, Small Cell/enzymology , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Humans , Indoles , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mesothelioma/pathology , Panobinostat
6.
Clin Cancer Res ; 12(1): 214-22, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16397045

ABSTRACT

Tumor-derived cyclooxygenase-2 (COX-2) and its product, prostaglandin E2, exert strong immunoinhibitory effects that block dendritic cell function and CD4+ and CD8+ T-cell proliferation and function. We have shown previously that the addition of an oral COX-2 inhibitor to immunogene therapy using IFN-beta markedly augmented therapeutic efficacy in murine tumor models. In this study, we hypothesized that COX-2 inhibition might also augment an antitumor vaccination strategy. Mice bearing tumors derived from TC1 cells, a tumor line that expresses the human papillomavirus (HPV) E7 protein, were thus vaccinated with an adenoviral vector expressing HPV E7 protein (Ad.E7). This vaccine approach effectively generated E7-specific CD8+ cells and slowed the growth of small tumors but had little effect on large tumors. However, feeding mice with the COX-2 inhibitor, rofecoxib, restored the effectiveness of the vaccine against large tumors and prolonged survival. This effect was accompanied by a larger percentage of E7-specific CD8+ cells in the regional draining lymph nodes and a markedly increased number of tumor-infiltrating E7-specific CD8+ cells (as determined by flow cytometry) and total CD8+ T cells (as determined by immunohistochemical staining). Increased immunocyte trafficking was likely mediated by the generation of a Th1-type tumor microenvironment because COX-2 inhibition increased expression levels of mRNA for IFN-gamma, interleukin-12, IP-10, and MIG while lowering the expression of vascular endothelial growth factor within tumors. This study shows that the effectiveness of a cancer vaccine can be significantly improved by adding COX-2 inhibition.


Subject(s)
Cancer Vaccines/therapeutic use , Cyclooxygenase 2 Inhibitors/administration & dosage , Lactones/administration & dosage , Neoplasms, Experimental/drug therapy , Sulfones/administration & dosage , Administration, Oral , Animals , CD8-Positive T-Lymphocytes/immunology , Chemokines/biosynthesis , Flow Cytometry , Humans , Mice , Oncogene Proteins, Viral/immunology , Papillomaviridae/immunology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...