Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 57(7): 1274-1283, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29368511

ABSTRACT

Peptidoglycan (PG) is a major component of the cell wall in Enterococcus faecalis. Accurate analysis of PG composition provides crucial insights into the bacterium's cellular functions and responses to external stimuli, but this analysis remains challenging because of various chemical modifications to PG-repeat subunits. We characterized changes to the PG composition of E. faecalis grown as planktonic bacteria and biofilm by developing "stable isotope labeling by amino acids in bacterial culture" (SILAB), optimized for bacterial cultures with incomplete amino acid labeling. This comparative analysis by mass spectrometry was performed by labeling E. faecalis in biofilm with heavy Lys (l-[13C6,2D9,15N2]Lys) and planktonic bacteria with natural abundance l-Lys, then mixing equal amounts of bacteria from each condition, and performing cell wall isolation and mutanolysin digestion necessary for liquid chromatography and mass spectrometry. An analytical method was developed to determine muropeptide abundances using correction factors to compensate for incomplete heavy Lys isotopic enrichment (98.33 ± 0.05%) and incorporation (83.23 ± 1.16%). Forty-seven pairs of PG fragment ions from isolated cell walls of planktonic and biofilm samples were selected for SILAB analysis. We found that the PG in biofilm showed an increased level of PG cross-linking, an increased level of N-deacetylation of GlcNAc, a decreased level of O-acetylation of MurNAc, and an increased number of stem modifications by d,d- and l,d-carboxypeptidases.


Subject(s)
Amino Acids/analysis , Biofilms , Cell Wall/chemistry , Enterococcus faecalis/chemistry , Peptidoglycan/analysis , Acetylation , Biofilms/growth & development , Endopeptidases/chemistry , Enterococcus faecalis/physiology , Isotope Labeling/methods , Plankton/microbiology , Spectrometry, Mass, Electrospray Ionization/methods
2.
Sci Rep ; 7: 46500, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406232

ABSTRACT

Vancomycin resistance is conferred upon vancomycin-resistant enterococci (VRE) through the replacement of peptidoglycan (PG) stem terminal d-Ala-d-Ala with d-Ala-d-Lac. The d-Ala-d-Lac incorporation can affect both the fitness and virulence of VRE. Here we comprehensively investigate the changes to PG composition in vancomycin-resistant Enterococcus faecalis following the growth in presence of vancomycin using liquid chromatography-mass spectrometry. Using high-resolution mass spectrometry, 104 unique muropeptides fragments were identified and the relative abundance of each fragment was accurately quantified by integrating the ion current of a selected ion using extracted-ion chromatogram. The analysis indicates reduced PG cross-linking, increased carboxypeptidase activities, increased N-deacetylation, and increased O-acetylation in VRE when grown in the presence of vancomycin. We found that O-acetylation preferentially occurred on muropeptides fragments with reduced cross-linking with a pentapeptide stem that terminated in d-Ala-d-Lac. These findings show that O-acetylation preferentially occurred in regions of the cell wall with reduced PG cross-linking on PG units that have stems terminating in d-Ala-d-Lac, serving as markers to prevent both the PG-stem modification by carboxypeptidases and the cell wall degradation by autolysins. Accurate quantitative PG composition analysis provided compositional insights into altered cell wall biosynthesis and modification processes in VRE that contribute to lysozyme resistance and enhanced virulence for VRE grown in the presence of vancomycin.


Subject(s)
Cell Wall/metabolism , Enterococcus faecalis/metabolism , Peptidoglycan/metabolism , Vancomycin-Resistant Enterococci/metabolism , Vancomycin/pharmacology , Acetylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...