Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(44): 16974-16988, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37885068

ABSTRACT

The partitioning of semivolatile organic compounds (SVOCs) between the condensed and gas phases can have significant implications for the properties of aerosol particles. In addition to affecting size and composition, this partitioning can alter radiative properties and impact cloud activation processes. We present measurements and model predictions on how activity and pH influence the evaporation of SVOCs from particles to the gas phase, specifically investigating aqueous inorganic particles containing dicarboxylic acids (DCAs). The aerosols are studied at the single-particle level by using optical trapping and cavity-enhanced Raman spectroscopy. Optical resonances in the spectra enable precise size tracking, while vibrational bands allow real-time monitoring of pH. Results are compared to a Maxwell-type model that accounts for volatile and nonvolatile solutes in aqueous droplets that are held at a constant relative humidity. The aerosol inorganic-organic mixture functional group activity coefficients thermodynamic model and Debye-Hückel theory are both used to calculate the activities of the species present in the droplet. For DCAs, we find that the evaporation rate is highly sensitive to the particle pH. For acidity changes of approximately 1.5 pH units, we observe a shift from a volatile system to one that is completely nonvolatile. We also observe that the pH itself is not constant during evaporation; it increases as DCAs evaporate, slowing the rate of evaporation until it eventually ceases. Whether a DCA evaporates or remains a stable component of the droplet is determined by the difference between the lowest pKa of the DCA and the pH of the droplet.


Subject(s)
Dicarboxylic Acids , Organic Chemicals , Dicarboxylic Acids/chemistry , Thermodynamics , Aerosols , Hydrogen-Ion Concentration
2.
J Phys Chem A ; 124(9): 1811-1820, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32013433

ABSTRACT

Single-particle trapping is an effective strategy to explore the physical and optical properties of aerosol with high precision. Laser-based methods are commonly used to probe the size, optical properties, and composition of nonlight-absorbing droplets in optical and electrodynamic traps. However, these methods cannot be applied to droplets containing photoactive chromophores, and thus, single-particle methods have been restricted to only a subset of atmospherically relevant particle compositions. In this work, we explore the application of a broadband light scattering approach, Mie resonance spectroscopy, to simultaneously probe the size and the refractive index (RI) of droplets in a linear quadrupole electrodynamic balance. We examine the evaporation of poly(ethylene glycol)s and compare the calculated vapor pressures with literature values to benchmark the size accuracy without prior constraint on the RI. We then explore the hygroscopic growth and deliquescence of sodium chloride droplets, measuring RI at the deliquescence relative humidity and demonstrating agreement to literature values. These data allow the wavelength dependence of the RI of aqueous NaCl to be determined using a first-order Cauchy equation, and we effectively reproduce literature data from multiple techniques. We finally discuss measurements from a light-absorbing aqueous droplet containing humic acid and interpret the spectra via the imaginary component of the RI. The approach described here allows the radius of nonabsorbing droplets to be determined within 0.1%, the refractive index within 0.2%, and the first-order term in the Cauchy dispersion equation within ∼5%.

3.
J Phys Chem A ; 123(15): 3374-3382, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30901522

ABSTRACT

An accurate understanding of the equilibration timescale of organic aerosol particles with surrounding water vapor is difficult because of the strong concentration-dependent diffusivities that are present in these systems. We examine this problem along with the closely related problem of the time-dependent radius of a binary aerosol particle during the uptake or loss of water. The governing equations and boundary conditions are discussed and a boundary value problem is formulated and solved. The resulting expressions are applied to water uptake and loss in two systems of atmospheric importance: aqueous-inorganic particles and high-viscosity organic particles. Accuracy is evaluated through a comparison with numerical solutions. For particles whose diffusivity has a strong dependence on water concentration and whose viscosity remains above 1 Pa·s during water uptake or loss, the expression for the characteristic equilibration time is found to be in excellent agreement with numerical results. Moreover, it provides physical insights into mass transport processes.

4.
Chempluschem ; 84(6): 754-765, 2019 06.
Article in English | MEDLINE | ID: mdl-31944011

ABSTRACT

A monomer-through-pentamer series of oligo(1,8-pyrenylene)s was synthesized using a two-step iterative synthetic strategy. The trimer, tetramer, and pentamer are mixtures of atropisomers that interconvert slowly at room temperature (as shown by variable-temperature NMR analysis). They are liquids well below room temperature, as indicated by POM, DSC and SWAXS analysis. These oligomers are highly fluorescent both in the liquid state and in dilute solution (λF,max = 444-457 nm, φF = 0.80) and an investigation of their photophysical properties demonstrated that delocalization plays a larger role in their excited states than it does in related pyrene-based oligomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...