Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 30(7): e02153, 2020 10.
Article in English | MEDLINE | ID: mdl-32348601

ABSTRACT

California's Central Valley, USA is a critical component of the Pacific Flyway despite loss of more than 90% of its wetlands. Moist soil seed (MSS) wetland plants are now produced by mimicking seasonal flooding in managed wetlands to provide an essential food resource for waterfowl. Managers need MSS plant area and productivity estimates to support waterfowl conservation, yet this remains unknown at the landscape scale. Also the effects of recent drought on MSS plants have not been quantified. We generated Landsat-derived estimates of extents and productivity (seed yield or its proxy, the green chlorophyll index) of major MSS plants including watergrass (Echinochloa crusgalli) and smartweed (Polygonum spp.) (WGSW), and swamp timothy (Crypsis schoenoides) (ST) in all Central Valley managed wetlands from 2007 to 2017. We tested the effects of water year, land ownership and region on plant area and productivity with a multifactor nested analysis of variance. For the San Joaquin Valley, we explored the association between water year and water supply, and we developed metrics to support management decisions. MSS plant area maps were based on a support vector machine classification of Landsat phenology metrics (2017 map overall accuracy: 89%). ST productivity maps were created with a linear regression model of seed yield (n = 68, R2  = 0.53, normalized RMSE = 10.5%). The Central Valley-wide estimated area for ST in 2017 was 32,369 ha (29,845-34,893 ha 95% CI), and 13,012 ha (11,628-14,396 ha) for WGSW. Mean ST seed yield ranged from 577 kg/ha in the Delta Basin to 365 kg/ha in the San Joaquin Basin. WGSW area and ST seed yield decreased while ST area increased in critical drought years compared to normal water years (Scheffe's test, P < 0.05). Greatest ST area increases occurred in the Sacramento Valley (~75%). Voluntary water deliveries increased in normal water years, and ST seed yield increased with water supply. Z scores of ST seed yield can be used to evaluate wetland performance and aid resource allocation decisions. Updated maps will support habitat monitoring, conservation planning and water management in future years, which are likely to face greater uncertainty in water availability with climate change.


Subject(s)
Remote Sensing Technology , Soil , California , Droughts , Seeds , Wetlands
2.
Sensors (Basel) ; 8(12): 7792-7808, 2008 Dec 03.
Article in English | MEDLINE | ID: mdl-27873958

ABSTRACT

In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R² = 0.61 for 2005 and R² = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

SELECTION OF CITATIONS
SEARCH DETAIL
...