Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 69(1): 120-5, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22927226

ABSTRACT

BACKGROUND: It is important to understand the degradation of organic molecules in surface waters to ensure that risk assessments, intended to prevent adverse effects on human health and the environment, are robust. One important degradation mechanism in surface waters is photodegradation. This process is generally studied in laboratory test systems, and the significance of the results is then extrapolated to the field. The aim of this work was to assess how fluctuations in the composition of surface water influence the photodegradation rate of chlorotoluron. RESULTS: Photodegradation DT(50) values in the lake (mean = 26.0 days) and pond (mean = 26.0 days) were significantly slower than in the river (mean = 6.8 days) and stream (mean = 7.3 days) samples. The DT(50) values in the pond and lake samples were similar to the direct photolysis value (mean = 28.6 days). Photodegradation was significantly faster in the stream and river samples, suggesting that indirect photolysis was significant in those waters. Principal component analysis indicated a strong inverse correlation between nitrate concentration and degradation rate. CONCLUSIONS: Nitrate concentration had a strong influence on the rate of photodegradation, with increasing nitrate concentrations sharply reducing the DT(50) . However, this effect was restricted to a narrow concentration range and levelled off quite quickly, such that further increases in the nitrate concentration had no significant effect on the rate of degradation. Extrapolating photodegradation rates of chlorotoluron from the laboratory to the field should be relatively straightforward, provided the nitrate concentrations in the waters are known.


Subject(s)
Fresh Water/chemistry , Nitrates/chemistry , Phenylurea Compounds/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , England , Lakes/chemistry , Nitrates/analysis , Phenylurea Compounds/analysis , Ponds/chemistry , Principal Component Analysis , Rivers/chemistry , Seasons , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 29(3): 575-81, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20821481

ABSTRACT

The photodegradation of six crop protection products (CPPs) was studied in 16 natural waters collected from across the midwest of the United States under simulated sunlight to determine the significance of indirect photolysis. The rate of degradation of five of the CPPs was faster in irradiated natural waters than in buffer systems, with the effect particularly significant with the relatively photostable compounds propiconazole and prometryn. Degradation rates were correlated with the concentration of one or more photosensitizers, or ratios thereof, by means of a Pearson's correlation and linear regression analysis. It was found that the photodegradation of chlorotoluron, pinoxaden, propiconazole and prometryn were linked to the concentration of nitrate, pointing to a significant role of hydroxyl radical ((.)OH) as a reactive intermediate. Increased concentrations of dissolved organic carbon (DOC) and bicarbonate relative to nitrate were found to decrease the rate of degradation of these compounds, consistent with a quenching role. Chlorothalonil appeared to be rapidly degraded by means of the carbonate radical ((.)CO(3)(-)), whereas the photodegradation of emamectin was particularly complex. Overall, indirect photolysis significantly enhanced the rate of CPP degradation and fate models based on these experiments appear to offer more realism than those that only take into account direct photolysis.


Subject(s)
Crops, Agricultural , Water Pollutants, Chemical/analysis , Hydroxyl Radical , Organic Chemicals/analysis , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...