Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
ACS Med Chem Lett ; 15(6): 879-884, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38894928

ABSTRACT

Methodology is described for the synthesis of C6 derivatives of raloxifene, a prescribed drug for the treatment and prevention of osteoporosis. Studies have explored the incorporation of electron-withdrawing substituents at C6 of the benzothiophene core. Efficient processes are also examined to introduce hydrogen bond donor and acceptor functionality. Raloxifene derivatives are evaluated with in vitro testing to determine estrogen receptor (ER) binding affinity and gene expression in MC3T3 cells.

2.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38826419

ABSTRACT

Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.

3.
Bone Rep ; 21: 101774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778834

ABSTRACT

As international incidence of diabetes and diabetes-driven comorbidities such as chronic kidney disease (CKD) continue to climb, interventions are needed that address the high-risk skeletal fragility of what is a complex disease state. Romosozumab (Romo) is an FDA-approved sclerostin inhibitor that has been shown to increase bone mineral density and decrease fracture rates in osteoporotic patients with mild to severe CKD, but its effect on diabetes-weakened bone is unknown. We aimed to test Romo's performance in a model of combined diabetes and CKD. 6-week old male C57BL/6 mice were randomly divided into control (CON) and disease model (STZ-Ad) groups, using a previously established streptozotocin- and adenine-diet-induced model. After 16 weeks of disease induction, both CON and STZ-Ad groups were subdivided into two treatment groups and given weekly subcutaneous injections of 100 µL vehicle (phosphorus buffered saline, PBS) or 10 mg/kg Romo. Mice were euthanized after 4 weeks of treatment via cardiac exsanguination and cervical dislocation. Hindlimb bones and L4 vertebrae were cleaned of soft tissue, wrapped in PBS-soaked gauze and stored at -20C. Right tibiae, femora, and L4s were scanned via microcomputed tomography; tibiae were then tested to failure in 4-pt bending while L4s were compression tested. Romo treatment significantly increased cortical and trabecular bone mass in both STZ-Ad and CON animals. These morphological improvements created corresponding increases in cortical bending strength and trabecular compression strength, with STZ-Ad treated mice surpassing vehicle CON mice in all trabecular mechanics measures. These results suggest that Romo retains its efficacy at increasing bone mass and strength in diabetic kidney disease.

4.
Calcif Tissue Int ; 114(6): 638-649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642089

ABSTRACT

Type 2 diabetes (T2D) increases fracture incidence and fracture-related mortality rates (KK.Cg-Ay/J. The Jackson Laboratory; Available from: https://www.jax.org/strain/002468 ). While numerous mouse models for T2D exist, few effectively stimulate persistent hyperglycemia in both sexes, and even fewer are suitable for bone studies. Commonly used models like db/db and ob/ob have altered leptin pathways, confounding bone-related findings since leptin regulates bone properties (Fajardo et al. in Journal of Bone and Mineral Research 29(5): 1025-1040, 2014). The Yellow Kuo Kondo (KK/Ay) mouse, a polygenic mutation model of T2D, is able to produce a consistent diabetic state in both sexes and addresses the lack of a suitable model of T2D for bone studies. The diabetic state of KK/Ay stems from a mutation in the agouti gene, responsible for coat color in mice. This mutation induces ectopic gene expression across various tissue types, resulting in diabetic mice with yellow fur coats (Moussa and Claycombe in Obesity Research 7(5): 506-514, 1999). Male and female KK/Ay mice exhibited persistent hyperglycemia, defining them as diabetic with blood glucose (BG) levels consistently exceeding 300 mg/dL. Notably, male control mice in this study were also diabetic, presenting a significant limitation. Nevertheless, male and female KK/Ay mice showed significantly elevated BG levels, HbA1c, and serum insulin concentration when compared to the non-diabetic female control mice. Early stages of T2D are characterized by hyperglycemia and hyperinsulinemia resulting from cellular insulin resistance, whereas later stages may feature hypoinsulinemia due to ß-cell apoptosis (Banday et al. Avicenna Journal of Medicine 10(04): 174-188, 2020 and Klein et al. Cell Metabolism 34(1): 11-20, 2022). The observed hyperglycemia, hyperinsulinemia, and the absence of differences in ß-cell mass suggest that KK/Ay mice in this study are modeling the earlier stages of T2D. While compromised bone microarchitecture was observed in this study, older KK/Ay mice, representing more advanced stages of T2D, might exhibit more pronounced skeletal manifestations. Compared to the control group, the femora of KK/Ay mice had higher cortical area and cortical thickness, and improved trabecular properties which would typically be indicative of greater bone strength. However, KK/Ay mice displayed lower cortical tissue mineral density in both sexes and increased cortical porosity in females. Fracture instability toughness of the femora was lower in KK/Ay mice overall compared to controls. These findings indicate that decreased mechanical integrity noted in the femora of KK/Ay mice was likely due to overall bone quality being compromised.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Models, Animal , Mutation , Obesity , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Mice , Female , Male , Mutation/genetics , Obesity/genetics , Obesity/metabolism , Obesity/complications , Bone and Bones/metabolism , Bone and Bones/pathology , Mice, Obese , Bone Density/genetics
5.
Bone ; 185: 117111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679220

ABSTRACT

Chronic heavy alcohol consumption is a risk factor for low trauma bone fracture. Using a non-human primate model of voluntary alcohol consumption, we investigated the effects of 6 months of ethanol intake on cortical bone in cynomolgus macaques (Macaca fascicularis). Young adult (6.4 ± 0.1 years old, mean ± SE) male cynomolgus macaques (n = 17) were subjected to a 4-month graded ethanol induction period, followed by voluntary self-administration of water or ethanol (4 % w/v) for 22 h/d, 7 d/wk. for 6 months. Control animals (n = 6) consumed an isocaloric maltose-dextrin solution. Tibial response was evaluated using densitometry, microcomputed tomography, histomorphometry, biomechanical testing, and Raman spectroscopy. Global bone response was evaluated using biochemical markers of bone turnover. Monkeys in the ethanol group consumed an average of 2.3 ± 0.2 g/kg/d ethanol resulting in a blood ethanol concentration of 90 ± 12 mg/dl in longitudinal samples taken 7 h after the daily session began. Ethanol consumption had no effect on tibia length, mass, density, mechanical properties, or mineralization (p > 0.642). However, compared to controls, ethanol intake resulted in a dose-dependent reduction in intracortical bone porosity (Spearman rank correlation = -0.770; p < 0.0001) and compared to baseline, a strong tendency (p = 0.058) for lower plasma CTX, a biochemical marker of global bone resorption. These findings are important because suppressed cortical bone remodeling can result in a decrease in bone quality. In conclusion, intracortical bone porosity was reduced to subnormal values 6 months following initiation of voluntary ethanol consumption but other measures of tibia architecture, mineralization, or mechanics were not altered.


Subject(s)
Alcohol Drinking , Calcification, Physiologic , Cortical Bone , Macaca fascicularis , Animals , Male , Porosity , Alcohol Drinking/physiopathology , Cortical Bone/drug effects , Cortical Bone/pathology , Cortical Bone/diagnostic imaging , Calcification, Physiologic/drug effects , Biomechanical Phenomena/drug effects , X-Ray Microtomography , Tibia/drug effects , Tibia/diagnostic imaging , Tibia/pathology , Ethanol/pharmacology , Spectrum Analysis, Raman , Bone Density/drug effects
6.
Bone ; 183: 117089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575047

ABSTRACT

INTRODUCTION: Patients with chronic kidney disease (CKD) are at an alarming risk of fracture compared to age and sex-matched non-CKD individuals. Clinical and preclinical data highlight two key factors in CKD-induced skeletal fragility: cortical porosity and reduced matrix-level properties including bone hydration. Thus, strategies are needed to address these concerns to improve mechanical properties and ultimately lower fracture risk in CKD. We sought to evaluate the singular and combined effects of mechanical and pharmacological interventions on modulating porosity, bone hydration, and mechanical properties in CKD. METHODS: Sixteen-week-old male C57BL/6J mice underwent a 10-week CKD induction period via a 0.2 % adenine-laced casein-based diet (n = 48) or remained as non-CKD littermate controls (Con, n = 48). Following disease induction (26 weeks of age), n = 7 CKD and n = 7 Con were sacrificed (baseline cohort) to confirm a steady-state CKD state was achieved prior to the initiation of treatment. At 27 weeks of age, all remaining mice underwent right tibial loading to a maximum tensile strain of 2050 µÆ 3× a week for five weeks with the contralateral limb as a non-loaded control. Half of the mice (equal number CKD and Con) received subcutaneous injections of 0.5 mg/kg raloxifene (RAL) 5× a week, and the other half remained untreated (UN). Mice were sacrificed at 31 weeks of age. Serum biochemistries were performed, and bi-lateral tibiae were assessed for microarchitecture, whole bone and tissue level mechanical properties, and composition including bone hydration. RESULTS: Regardless of intervention, BUN and PTH were higher in CKD animals throughout the study. In CKD, the combined effects of loading and RAL were quantified as lower cortical porosity and improved mechanical, material, and compositional properties, including higher matrix-bound water. Loading was generally responsible for positive impacts in cortical geometry and structural mechanical properties, while RAL treatment improved some trabecular outcomes and material-level mechanical properties and was responsible for improvements in several compositional parameters. While control animals responded positively to loading, their bones were less impacted by the RAL treatment, showing no deformation, toughness, or bound water improvements which were all evident in CKD. Serum PTH levels were negatively correlated with matrix-bound water. DISCUSSION: An effective treatment program to improve fracture risk in CKD ideally focuses on the cortical bone and considers both cortical porosity and matrix properties. Loading-induced bone formation and mechanical improvements were observed across groups, and in the CKD cohort, this included lower cortical porosity. This study highlights that RAL treatment superimposed on active bone formation may be ideal for reducing skeletal complications in CKD by forming new bone with enhanced matrix properties.


Subject(s)
Fractures, Bone , Renal Insufficiency, Chronic , Mice , Humans , Male , Animals , Raloxifene Hydrochloride/pharmacology , Disease Models, Animal , Mice, Inbred C57BL , Fractures, Bone/complications , Water
7.
Bone ; 184: 117106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641232

ABSTRACT

Osteogenesis imperfecta (OI) increases fracture risk due to changes in bone quantity and quality caused by mutations in collagen and its processing proteins. Current therapeutics improve bone quantity, but do not treat the underlying quality deficiencies. Male and female G610C+/- mice, a murine model of OI, were treated with a combination of raloxifene and in vivo axial tibial compressive loading starting at 10 weeks of age and continuing for 6 weeks to improve bone quantity and quality. Bone geometry and mechanical properties were measured to determine whole bone and tissue-level material properties. A colocalized Raman/nanoindentation system was used to measure chemical composition and nanomechanical properties in newly formed bone compared to old bone to determine if bone formed during the treatment regimen differed in quality compared to bone formed prior to treatment. Lastly, lacunar geometry and osteocyte apoptosis were assessed. OI mice were able to build bone in response to the loading, but this response was less robust than in control mice. Raloxifene improved some bone material properties in female but not male OI mice. Raloxifene did not alter nanomechanical properties, but loading did. Lacunar geometry was largely unchanged with raloxifene and loading. However, osteocyte apoptosis was increased with loading in raloxifene treated female mice. Overall, combination treatment with raloxifene and loading resulted in positive but subtle changes to bone quality.


Subject(s)
Disease Models, Animal , Osteogenesis Imperfecta , Raloxifene Hydrochloride , Animals , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/pathology , Female , Male , Mice , Bone and Bones/drug effects , Bone and Bones/pathology , Biomechanical Phenomena/drug effects , Apoptosis/drug effects , Anabolic Agents/pharmacology , Anabolic Agents/therapeutic use , Weight-Bearing , Osteocytes/drug effects , Osteocytes/metabolism , Osteocytes/pathology
8.
Bone ; 181: 117046, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336158

ABSTRACT

Down syndrome (DS), affecting ∼1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine. While the femur has been studied in DS mouse models, there is little research done on the vertebrae despite evidence that humans with DS have affected vertebrae. Additionally, it is important to establish when skeletal deficits occur to find times of potential intervention. The Dp(16)1Yey DS mouse model has all genes triplicated on mouse chromosome 16 orthologous to Hsa21 and displayed deficits in long bone, including trabecular and cortical deficits in male but not female mice, at 12 weeks. We hypothesized that the long bone and lumbovertebral microarchitecture would exhibit sexually dimorphic deficits in Dp(16)1Yey mice compared to control mice and long bone strength would be diminished in Dp(16)1Yey mice at 6 weeks. The trabecular region of the 4th lumbar (L4) vertebra and the trabecular and cortical regions of the femur were analyzed via micro-computed tomography and 3-point bending in 6-week-old male and female Dp(16)1Yey and control mice. Trabecular and cortical deficits were observed in femurs from male Dp(16)1Yey mice, and cortical deficits were seen in femurs of male and female Dp(16)1Yey mice. Male Dp(16)1Yey femurs had more deficits in bone strength at whole bone and tissue-estimate level properties, but female Dp(16)1Yey mice were also affected. Additionally, the L4 of male and female Dp(16)1Yey mice show trabecular deficits, which have not been previously reported in a DS mouse model. Our results indicate that skeletal deficits associated with DS occur early in skeletal development, are dependent on skeletal compartment and site, are sex dependent, and potential interventions should likely begin early in skeletal development of DS mouse models.


Subject(s)
Down Syndrome , Male , Mice , Humans , Female , Animals , Down Syndrome/complications , Down Syndrome/genetics , X-Ray Microtomography , Femur/diagnostic imaging , Femur Neck , Spine , Disease Models, Animal , Bone Density
9.
Stud Health Technol Inform ; 310: 1091-1095, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269983

ABSTRACT

Clinical dashboards are an emerging and fast-evolving technology used to support frontline clinicians' practice. Understanding end users' perceived engagement with clinical dashboards is essential to co-design, implementation, and adoption. There is a lack of literature exploring the integration of dashboards into clinical workflow. This rapid review explores clinical end users' perceived engagement with dashboards that support workflow. We conducted a literature search in PubMed and CINAHL. Four articles met our eligibility criteria. Findings reveal variations in taxonomy and measures used to evaluate clinicians' perceived engagement. There are also a variety of reported barriers and facilitators to adoption. Standardized frameworks and vocabulary are needed to facilitate a common understanding of clinical end users' perceived engagement with dashboards.


Subject(s)
Dashboard Systems , Eligibility Determination , PubMed , Technology , Workflow
10.
Bone ; 179: 116970, 2024 02.
Article in English | MEDLINE | ID: mdl-37977416

ABSTRACT

Osteogenesis imperfecta (OI) is a hereditary bone disease in which gene mutations affect collagen formation, leading to a weak, brittle bone phenotype that can cause severe skeletal deformity and increased fracture risk. OI interventions typically repurpose osteoporosis medications to increase bone mass, but this approach does not address compromised tissue-level material properties. Raloxifene (RAL) is a mild anti-resorptive used to treat osteoporosis that has also been shown to increase bone strength by a-cellularly increasing bone bound water content, but RAL cannot be administered to children due to its hormonal activity. The goal of this study was to test a RAL analog with no estrogen receptor (ER) signaling but maintained ability to reduce fracture risk. The best performing analog from a previous analog characterization project, named RAL-ADM, was tested in an in vivo study. Female wildtype (WT) and Col1a2G610C/+ (G610C) mice were randomly assigned to treated or untreated groups, for a total of 4 groups (n = 15). Starting at 10 weeks of age, all mice underwent compressive tibial loading 3×/week to induce an anabolic bone formation response in conjunction with RAL-ADM treatment (0.5 mg/kg; 5×/week) for 6 weeks. Tibiae were scanned via microcomputed tomography then tested to failure in four-point bending. RAL-ADM had reduced ER affinity, and increased post-yield properties, but did not improve bone strength in OI animals, suggesting some properties can be improved by RAL analogs but further development is needed to create an analog with decidedly positive impacts to OI bone.


Subject(s)
Fractures, Bone , Osteogenesis Imperfecta , Osteoporosis , Animals , Female , Mice , Disease Models, Animal , Osteogenesis , Osteogenesis Imperfecta/genetics , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use , X-Ray Microtomography
11.
J Vis Exp ; (199)2023 09 01.
Article in English | MEDLINE | ID: mdl-37677027

ABSTRACT

Skeletal fragility leading to fracture is an American public health crisis resulting in 1.5 million fractures each year and $18 billion in direct care costs. The ability to understand the mechanisms underlying bone disease and the response to treatment is not only desired, but critical. Mechanical testing of bone serves as a valuable technique for understanding and quantifying a bone's susceptibility to fracture. While this method appears simple to perform, inappropriate and inaccurate conclusions may be reached if governing assumptions and key steps are disregarded by the user. This has been observed across disciplines as studies continue to be published with misuse of methods and incorrect interpretation of results. This protocol will serve as a primer for the principles associated with mechanical testing along with the application of these techniques-from considerations of sample size through tissue harvesting and storage, to data analysis and interpretation. With this in hand, valuable information regarding a bone's susceptibility to fracture may be obtained, furthering understanding for both academic research and clinical solutions.


Subject(s)
Bone Diseases , Fractures, Bone , Humans , Bone and Bones , Data Analysis , Hand
12.
Clin J Am Soc Nephrol ; 18(11): 1456-1465, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37574661

ABSTRACT

INTRODUCTION: Secondary hyperparathyroidism is associated with osteoporosis and fractures. Etelcalcetide is an intravenous calcimimetic for the control of hyperparathyroidism in patients on hemodialysis. Effects of etelcalcetide on the skeleton are unknown. METHODS: In a single-arm, open-label, 36-week prospective trial, we hypothesized that etelcalcetide improves bone quality and strength without damaging bone-tissue quality. Participants were 18 years or older, on hemodialysis ≥1 year, without calcimimetic exposure within 12 weeks of enrollment. We measured pretreatment and post-treatment areal bone mineral density by dual-energy X-ray absorptiometry, central skeleton trabecular microarchitecture by trabecular bone score, and peripheral skeleton volumetric bone density, geometry, microarchitecture, and estimated strength by high-resolution peripheral quantitative computed tomography. Bone-tissue quality was assessed using quadruple-label bone biopsy in a subset of patients. Paired t tests were used in our analysis. RESULTS: Twenty-two participants were enrolled; 13 completed follow-up (mean±SD age 51±14 years, 53% male, and 15% White). Five underwent bone biopsy (mean±SD age 52±16 years and 80% female). Over 36 weeks, parathyroid hormone levels declined 67%±9% ( P < 0.001); areal bone mineral density at the spine, femoral neck, and total hip increased 3%±1%, 7%±2%, and 3%±1%, respectively ( P < 0.05); spine trabecular bone score increased 10%±2% ( P < 0.001); and radius stiffness and failure load trended to a 7%±4% ( P = 0.05) and 6%±4% increase ( P = 0.06), respectively. Bone biopsy demonstrated a decreased bone formation rate (mean difference -25±4 µ m 3 / µ m 2 per year; P < 0.01). CONCLUSIONS: Treatment with etelcalcetide for 36 weeks was associated with improvements in central skeleton areal bone mineral density and trabecular quality and lowered bone turnover without affecting bone material properties. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: The Effect of Etelcalcetide on CKD-MBD (Parsabiv-MBD), NCT03960437.


Subject(s)
Bone and Bones , Peptides , Humans , Male , Female , Adult , Middle Aged , Aged , Prospective Studies , Peptides/adverse effects , Bone Density , Absorptiometry, Photon
13.
Bone ; 173: 116808, 2023 08.
Article in English | MEDLINE | ID: mdl-37207990

ABSTRACT

Chronic kidney disease (CKD) is characterized by secondary hyperparathyroidism and an increased risk of hip fractures predominantly related to cortical porosity. Unfortunately, bone mineral density measurements and high-resolution peripheral computed tomography (HR-pQCT) imaging have shortcomings that limit their utility in these patients. Ultrashort echo time magnetic resonance imaging (UTE-MRI) has the potential to overcome these limitations by providing an alternative assessment of cortical porosity. The goal of the current study was to determine if UTE-MRI could detect changes in porosity in an established rat model of CKD. Cy/+ rats (n = 11), an established animal model of CKD-MBD, and their normal littermates (n = 12) were imaged using microcomputed tomography (microCT) and UTE-MRI at 30 and 35 weeks of age (which approximates late-stage kidney disease in humans). Images were obtained at the distal tibia and the proximal femur. Cortical porosity was assessed using the percent porosity (Pore%) calculated from microCT imaging and the porosity index (PI) calculated from UTE-MRI. Correlations between Pore% and PI were also calculated. Cy/+ rats had higher Pore% than normal rats at both skeletal sites at 35 weeks (tibia = 7.13 % +/- 5.59 % vs. 0.51 % +/- 0.09 %, femur = 19.99 % +/- 7.72 % vs. 2.72 % +/- 0.32 %). They also had greater PI at the distal tibia at 30 weeks of age (0.47 +/- 0.06 vs. 0.40 +/- 0.08). However, Pore% and PI were only correlated in the proximal femur at 35 weeks of age (ρ = 0.929, Spearman). These microCT results are consistent with prior studies in this animal model utilizing microCT imaging. The UTE-MRI results were inconsistent, resulting in variable correlations with microCT imaging, which may be related to suboptimal bound and pore water discrimination at higher magnetic field strengths. Nevertheless, UTE-MRI may still provide an additional clinical tool to assess fracture risk without using ionizing radiation in CKD patients.


Subject(s)
Hip Fractures , Renal Insufficiency, Chronic , Humans , Animals , Rats , X-Ray Microtomography , Porosity , Cortical Bone/diagnostic imaging , Magnetic Resonance Imaging/methods , Bone Density , Models, Animal , Renal Insufficiency, Chronic/diagnostic imaging
14.
Bone ; 173: 116805, 2023 08.
Article in English | MEDLINE | ID: mdl-37196853

ABSTRACT

Raloxifene (RAL) reduces clinical fracture risk despite modest effects on bone mass and density. This reduction in fracture risk may be due to improved material level-mechanical properties through a non-cell mediated increase in bone hydration. Synthetic salmon calcitonin (CAL) has also demonstrated efficacy in reducing fracture risk with only modest bone mass and density improvements. This study aimed to determine if CAL could modify healthy and diseased bone through cell-independent mechanisms that alter hydration similar to RAL. 26-week-old male C57BL/6 mice induced with chronic kidney disease (CKD) beginning at 16 weeks of age via 0.2 % adenine-laced casein-based (0.9 % P, 0.6 % C) chow, and their non-CKD control littermates (Con), were utilized. Upon sacrifice, right femora were randomly assigned to the following ex vivo experimental groups: RAL (2 µM, n = 10 CKD, n = 10 Con), CAL (100 nM, n = 10 CKD, n = 10 Con), or Vehicle (VEH; n = 9 CKD, n = 9 Con). Bones were incubated in PBS + drug solution at 37 °C for 14 days using an established ex vivo soaking methodology. Cortical geometry (µCT) was used to confirm a CKD bone phenotype, including porosity and cortical thinning, at sacrifice. Femora were assessed for mechanical properties (3-point bending) and bone hydration (via solid state nuclear magnetic resonance spectroscopy with magic angle spinning (ssNMR)). Data were analyzed by two-tailed t-tests (µCT) or 2-way ANOVA for main effects of disease, treatment, and their interaction. Tukey's post hoc analyses followed a significant main effect of treatment to determine the source of the effect. Imaging confirmed a cortical phenotype reflective of CKD, including lower cortical thickness (p < 0.0001) and increased cortical porosity (p = 0.02) compared to Con. In addition, CKD resulted in weaker, less deformable bones. In CKD bones, ex vivo exposure to RAL or CAL improved total work (+120 % and +107 %, respectively; p < 0.05), post-yield work (+143 % and +133 %), total displacement (+197 % and +229 %), total strain (+225 % and +243 %), and toughness (+158 % and +119 %) vs. CKD VEH soaked bones. Ex vivo exposure to RAL or CAL did not impact any mechanical properties in Con bone. Matrix-bound water by ssNMR showed CAL treated bones had significantly higher bound water compared to VEH treated bones in both CKD and Con cohorts (p = 0.001 and p = 0.01, respectively). RAL positively modulated bound water in CKD bone compared to VEH (p = 0.002) but not in Con bone. There were no significant differences between bones soaked with CAL vs. RAL for any outcomes measured. RAL and CAL improve important post-yield properties and toughness in a non-cell mediated manner in CKD bone but not in Con bones. While RAL treated CKD bones had higher matrix-bound water content in line with previous reports, both Con and CKD bones exposed to CAL had higher matrix-bound water. Therapeutic modulation of water, specifically the bound water fraction, represents a novel approach to improving mechanical properties and potentially reducing fracture risk.


Subject(s)
Bone Density Conservation Agents , Fractures, Bone , Animals , Male , Mice , Bone Density Conservation Agents/pharmacology , Calcitonin , Fractures, Bone/drug therapy , Mice, Inbred C57BL , Raloxifene Hydrochloride/pharmacology , Water
15.
Calcif Tissue Int ; 113(1): 110-125, 2023 07.
Article in English | MEDLINE | ID: mdl-37147466

ABSTRACT

The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.


Subject(s)
Osteoporosis , Parathyroid Hormone , Mice , Animals , Parathyroid Hormone/metabolism , Mice, Knockout , Transcription Factors/genetics , Gene Expression Regulation , Osteoporosis/drug therapy , Osteoporosis/genetics
16.
Bone Res ; 11(1): 25, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37193680

ABSTRACT

Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene mutations lead to fragile X syndrome, cognitive disorders, and, in some individuals, scoliosis and craniofacial abnormalities. Four-month-old (mo) male mice with deletion of the FMR1 gene exhibit a mild increase in cortical and cancellous femoral bone mass. However, consequences of absence of FMR1 in bone of young/aged male/female mice and the cellular basis of the skeletal phenotype remain unknown. We found that absence of FMR1 results in improved bone properties with higher bone mineral density in both sexes and in 2- and 9-mo mice. The cancellous bone mass is higher only in females, whereas, cortical bone mass is higher in 2- and 9-mo males, but higher in 2- and lower in 9-mo female FMR1-knockout mice. Furthermore, male bones show higher biomechanical properties at 2mo, and females at both ages. Absence of FMR1 increases osteoblast/mineralization/bone formation and osteocyte dendricity/gene expression in vivo/ex vivo/in vitro, without affecting osteoclasts in vivo/ex vivo. Thus, FMR1 is a novel osteoblast/osteocyte differentiation inhibitor, and its absence leads to age-, site- and sex-dependent higher bone mass/strength.

17.
J Mech Behav Biomed Mater ; 142: 105827, 2023 06.
Article in English | MEDLINE | ID: mdl-37060715

ABSTRACT

Healthy articular cartilage exhibits remarkable resistance to wear, sustaining mechanical loads and relative motion for decades. However, tissues that replace or repair cartilage defects are much less long lasting. Better information on the compositional and material characteristics that contribute to the wear resistance of healthy cartilage could help guide strategies to replace and repair degenerated tissue. The main objective of this study was to assess the relationship between wear of healthy articular cartilage, its biochemical composition, and its viscoelastic material properties. The correlation of these factors with the coefficient of friction during the wear test was also evaluated. Viscoelastic properties of healthy bovine cartilage were determined via stress relaxation indentation. The same specimens underwent an accelerated, in vitro wear test, and the amount of glycosaminoglycans (GAGs) and collagen released during the wear test were considered measures of wear. The frictional response during the wear test was also recorded. The GAG, collagen and water content and the concentration of the enzymatic collagen crosslink pyridinoline were quantified in tissue that was adjacent to each wear test specimen. Finally, correlation analysis was performed to identify potential relationships between wear characteristics of healthy articular cartilage with its composition, viscoelastic material properties and friction. The findings suggest that stiffer cartilage with higher GAG, collagen and water content has a higher wear resistance. Enzymatic collagen crosslinks also enhance the wear resistance of the collagen network. The parameters of wear, composition, and mechanical stiffness of cartilage were all correlated with one another, suggesting that they are interrelated. However, friction was largely independent of these in this study. The results identify characteristics of healthy articular cartilage that contribute to its remarkable wear resistance. These data may be useful for guiding techniques to restore, regenerate, and stabilize cartilage tissue.


Subject(s)
Cartilage, Articular , Animals , Cattle , Friction , Cartilage, Articular/physiology , Glycosaminoglycans/analysis , Collagen/analysis , Water , Stress, Mechanical
18.
Dis Model Mech ; 16(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36939025

ABSTRACT

Down syndrome (DS) phenotypes result from triplicated genes, but the effects of three copy genes are not well known. A mouse mapping panel genetically dissecting human chromosome 21 (Hsa21) syntenic regions was used to investigate the contributions and interactions of triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16) on skeletal phenotypes. Skeletal structure and mechanical properties were assessed in femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr and Dp1Tyb;Dyrk1a+/+/- mice. Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 triplicated, display bone deficits similar to those of humans with DS and served as a baseline for other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal parameters. As triplicated genes can both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes.


Subject(s)
Down Syndrome , Humans , Mice , Male , Female , Animals , Down Syndrome/genetics , Chromosomes, Human, Pair 21 , Disease Models, Animal , Phenotype
19.
Health Psychol ; 42(3): 195-204, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36227309

ABSTRACT

OBJECTIVE: Adult vaccination rates in the United States fall short of national goals, and rates are particularly low for Black Americans. We tested a provider-focused vaccination uptake intervention: a modified electronic health record clinical reminder that bundled together three adult vaccination reminders, presented patient vaccination history, and included talking points for providers to address vaccine hesitancy. METHOD: Primary care teams at the Atlanta Veterans Affairs Medical Center, who saw 28,941 patients during this period, were randomly assigned to receive either the modified clinical reminder (N = 44 teams) or the status quo (N = 40 teams). RESULTS: Uptake of influenza and other adult vaccinations was 1.6 percentage points higher in the intervention group, which was not statistically significant (confidence interval, CI [-1.3, 4.4], p = .28). The intervention had similar effects on Black and White patients and did not reduce the disparity in vaccination rates between these groups. CONCLUSION: Provider-focused interventions are a promising way to address vaccine hesitancy, but they may need to be more intensive than a modified clinical reminder to have appreciable effects on vaccination uptake. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Humans , United States , Reminder Systems , Vaccination , Influenza, Human/prevention & control , Primary Health Care
20.
Calcif Tissue Int ; 112(3): 359-362, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36371724

ABSTRACT

Thermoneutral housing and Raloxifene (RAL) treatment both have potential for improving mechanical and architectural properties of bone. Housing mice within a 30 to 32 °C range improves bone quality by reducing the consequences of cold stress, such as shivering and metabolic energy consumption (Chevalier et al. in Cell Metab 32(4):575-590.e7, 2020; Martin et al. in Endocr Connect 8(11):1455-1467, 2019; Hankenson et al. in Comp Med 68(6):425-438, 2018). Previous work suggests that Raloxifene can enhance bone strength and geometry (Ettinger et al. in Jama 282(7):637-645, 1999; Powell et al. in Bone Rep 12:100246, 2020). An earlier study in our lab utilized long bones to examine the effect of thermoneutral housing and Raloxifene treatment in mice, but no significant interactive effects were found. The lack of an impact is hypothesized to be connected to the short 6-week duration of the study and the type of bone analyzed. This study will examine the same question within the axial skeleton, which has a higher proportion of trabecular bone. After 6 weeks of treatment with RAL, vertebrae from female C57BL/6 J mice underwent microcomputed tomography (µCT), architectural analysis, and compression testing. Most of the tested geometric properties (bone volume/tissue volume percent, trabecular thickness, trabecular number, trabecular spacing) improved with both the housing and RAL treatment. The effect sizes suggested an additive effect when treating mice housed under thermoneutral conditions. While ultimate force was enhanced with the treatment and housing, force normalized by bone volume fraction was not significantly different between groups. For longer pre-clinical trials, it may be important to consider the impacts of temperature on mice to improve the accuracy of these models.


Subject(s)
Cancellous Bone , Raloxifene Hydrochloride , Mice , Female , Animals , Raloxifene Hydrochloride/therapeutic use , X-Ray Microtomography , Housing , Mice, Inbred C57BL , Bone Density
SELECTION OF CITATIONS
SEARCH DETAIL
...