Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Pediatr Radiol ; 53(8): 1640-1647, 2023 07.
Article in English | MEDLINE | ID: mdl-37062765

ABSTRACT

BACKGROUND: Intracranial pressure (ICP) monitoring in children currently requires invasive techniques. Subharmonic aided pressure estimation (SHAPE) uses contrast-enhanced ultrasound (CEUS) to measure intravascular and interstitial pressure, but utility in ICP measurements has yet to be explored. OBJECTIVE: The objective of this study was to investigate SHAPE as a novel tool for noninvasive ICP measurements in fetal lambs. MATERIALS AND METHODS: Eighteen fetal lambs at 107-139 days gestational age (term = 145 days) underwent subdural ICP catheter placement. The brain was imaged in the coronal plane in CEUS mode optimized for SHAPE, while infusing an US contrast agent into the fetal circulation. After SHAPE calibration, saline was infused via the subdural catheter to increase ICP. Five-second SHAPE cine clips were obtained at various ICPs. Subharmonic intensity values of the whole brain and thalami were correlated with ICP values using mixed effects linear regression analyses and the strength of the relationship was evaluated by Spearman's rank-order correlation. RESULTS: Forty-nine experiments produced 723 datapoints, including SHAPE intensity values and mean ICP measurements. There was a statistically significant inverse relationship between SHAPE intensity values and ICP measurements in the whole brain and thalami (median rho value - 0.58 and - 0.56, respectively). CONCLUSION: SHAPE intensity values of the brain demonstrate an inverse and statistically significant correlation with in vivo ICP measurements in an animal model.


Subject(s)
Contrast Media , Intracranial Pressure , Animals , Sheep , Humans , Ultrasonography/methods , Brain/diagnostic imaging
2.
Brain Stimul ; 16(3): 703-711, 2023.
Article in English | MEDLINE | ID: mdl-37055009

ABSTRACT

Focused ultrasound stimulation (FUS) activates mechanosensitive ion channels and is emerging as a method of noninvasive neuromodulation. In preclinical studies, FUS of the spleen (sFUS) activates an anti-inflammatory neural pathway which suppresses acute and chronic inflammation. However, the relevance of sFUS for regulating inflammatory responses in humans is unknown. Here, we used a modified diagnostic ultrasound imaging system to target the spleen of healthy human subjects with 3 min of continuously swept or stationary focused pulsed ultrasound, delivered at three different energy levels within allowable safety exposure limits. Potential anti-inflammatory effects of sFUS were assessed by measuring sFUS-elicited changes in endotoxin-induced tumor necrosis factor (TNF) production in whole blood samples from insonified subjects. We found that stimulation with either continuously swept or focused pulsed ultrasound has an anti-inflammatory effect: sFUS lowers TNF production for >2 h, with TNF returning to baseline by 24 h following sFUS. This response is independent of anatomical target (i.e., spleen hilum or parenchyma) or ultrasound energy level. No clinical, biochemical, or hematological parameters are adversely impacted. This is the first demonstration that sFUS suppresses the normal inflammatory response in humans, with potential implications for noninvasive bioelectronic therapy of inflammatory disorders.


Subject(s)
Spleen , Ultrasonic Therapy , Humans , Spleen/diagnostic imaging , Ultrasonography , Ultrasonic Therapy/methods , Neural Pathways , Ultrasonic Waves
3.
Ultrasound Med Biol ; 49(3): 787-801, 2023 03.
Article in English | MEDLINE | ID: mdl-36470739

ABSTRACT

Quantitative ultrasound (QUS) methods characterizing the backscattered echo signal have been of use in assessing tissue microstructure. High-frequency (30 MHz) QUS methods have been successful in detecting metastases in surgically excised lymph nodes (LNs), but limited evidence exists regarding the efficacy of QUS for evaluating LNs in vivo at clinical frequencies (2-10 MHz). In this study, a clinical scanner and 10-MHz linear probe were used to collect radiofrequency (RF) echo data of LNs in vivo from 19 cancer patients. QUS methods were applied to estimate parameters derived from the backscatter coefficient (BSC) and statistics of the envelope-detected RF signal. QUS parameters were used to train classifiers based on linear discriminant analysis (LDA) and support vector machines (SVMs). Two BSC-based parameters, scatterer diameter and acoustic concentration, were the most effective for accurately detecting metastatic LNs, with both LDA and SVMs achieving areas under the receiver operating characteristic (AUROC) curve ≥0.94. A strategy of classifying LNs based on the echo frame with the highest cancer probability improved performance to 88% specificity at 100% sensitivity (AUROC = 0.99). These results provide encouraging evidence that QUS applied at clinical frequencies may be effective at accurately identifying metastatic LNs in vivo, helping in diagnosis while reducing unnecessary biopsies and surgical treatments.


Subject(s)
Lymph Nodes , Humans , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Lymph Nodes/pathology , Ultrasonography/methods , ROC Curve , Biopsy
4.
IEEE J Transl Eng Health Med ; 10: 1800609, 2022.
Article in English | MEDLINE | ID: mdl-36051823

ABSTRACT

Hemorrhage control has been identified as a priority focus area both for civilian and military populations in the United States because exsanguination is the most common cause of preventable death in hemorrhagic injury. Non-compressible torso hemorrhage (NCTH) has high mortality rate and there are currently no broadly available therapies for NCTH outside of a surgical room environment. Novel therapies, which include High Intensity Focused Ultrasound (HIFU) have emerged as promising methods for hemorrhage control as they can non-invasively cauterize bleeding tissue deep within the body without injuring uninvolved regions. A major challenge in the application of HIFU with color Doppler US guidance is the interpretation and optimization of the blood flow images in real-time to identify the hemorrhagic focus. Today, this task requires an expert sonographer, limiting the utility of this therapy in non-clinical environments. In this work, we investigated the feasibility of an automated hemorrhage detection method using a Generative Adversarial Network (GAN) for anomaly detection that learns a manifold of normal blood flow variability and subsequently identifies anomalous flow patterns that fall outside the learned manifold. As an initial feasibility study, we collected ultrasound color Doppler images of femoral arteries in an animal model of vascular injury (N = 11 pigs). Velocity information of the blood flow were extracted from the color Doppler images that were used for training and testing the anomaly detection network. Normotensive images from 8 pigs were used for training, and testing was performed on normotensive, immediately after injury, 10 minutes post-injury and 30 minutes post-injury images from 3 other pigs. The residual images or the reconstructed error maps show promise in detecting hemorrhages with an AUC of 0.90, 0.87, 0.62 immediately, 10 minutes post-injury and 30 minutes post-injury respectively with an overall AUC of 0.83.


Subject(s)
Hemorrhage , Ultrasonography, Doppler, Color , Animals , Exsanguination , Femoral Artery/diagnostic imaging , Hemorrhage/diagnostic imaging , Swine , Ultrasonography
5.
Nat Biomed Eng ; 6(6): 683-705, 2022 06.
Article in English | MEDLINE | ID: mdl-35361935

ABSTRACT

Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.


Subject(s)
Diabetes Mellitus, Experimental , Glucose , Animals , Diabetes Mellitus, Experimental/therapy , Glucose/metabolism , Homeostasis , Hypothalamus/metabolism , Liver/metabolism , Mice , Rats , Swine
6.
J Ultrasound Med ; 41(9): 2181-2189, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34850412

ABSTRACT

OBJECTIVES: Hepatic venous pressure gradient (HVPG) is considered the standard in quantifying portal hypertension, but can be unreliable in dialysis patients. A noninvasive ultrasound technique, subharmonic-aided pressure estimation (SHAPE), may be a valuable surrogate of these pressure estimates. This study compared SHAPE and HVPG with pathology findings for fibrosis in dialysis patients. METHODS: This was a subgroup study from an IRB-approved trial that included 20 patients on dialysis undergoing SHAPE examinations of portal and hepatic veins using a modified Logiq 9 scanner (GE, Waukesha, WI), during infusion of Sonazoid (GE Healthcare, Oslo, Norway). SHAPE was compared to HVPG and pathology findings using the Ludwig-Batts scoring system for fibrosis. Logistic regression, ROC analysis, and t-tests were used to compare HVPG and SHAPE with pathological findings of fibrosis. RESULTS: Of 20 cases, 5 had HVPG values corresponding to subclinical and clinical portal hypertension (≥6 and ≥10 mmHg, respectively) while 15 had normal HVPG values (≤5 mmHg). SHAPE and HVPG correlated moderately (r = 0.45; P = .047). SHAPE showed a trend toward correlating with fibrosis (r = 0.42; P = .068), while HVPG did not (r = 0.18; P = .45). SHAPE could differentiate between mild (stage 0-1) and moderate to severe (stage 2-4) fibrosis (-10.4 ± 4.9 dB versus -5.4 ± 3.2 dB; P = .035), HVPG could not (3.0 ± 0.6 mmHg versus 4.8 ± 0.7 mmHg; P = .30). ROC curves showed a diagnostic accuracy for SHAPE of 80%, while HVPG reached 76%. CONCLUSION: Liver fibrosis staging in dialysis patients evaluated for portal hypertension appears to be more accurately predicted by SHAPE than by HVPG; albeit in a small sample size.


Subject(s)
Hypertension, Portal , Renal Insufficiency, Chronic , Humans , Hypertension, Portal/complications , Hypertension, Portal/diagnostic imaging , Liver Cirrhosis/complications , Liver Cirrhosis/diagnostic imaging , Portal Pressure , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnostic imaging , Renal Insufficiency, Chronic/therapy
7.
J Ultrasound Med ; 41(7): 1667-1675, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34694019

ABSTRACT

OBJECTIVE: Breast cancer is the most frequent type of cancer among women. This multi-center study assessed the ability of 3D contrast-enhanced ultrasound to characterize suspicious breast lesions using clinical assessments and quantitative parameters. METHODS: Women with suspicious breast lesions scheduled for biopsy were enrolled in this prospective, study. Following 2D grayscale ultrasound and power Doppler imaging (PDI), a contrast agent (Definity; Lantheus) was administrated. Contrast-enhanced 3D harmonic imaging (HI; transmitting/receiving at 5.0/10.0 MHz), as well as 3D subharmonic imaging (SHI; transmitting/receiving at 5.8/2.9 MHz), were performed using a modified Logiq 9 scanner (GE Healthcare). Five radiologists independently scored the imaging modes (including standard-of-care imaging) using a 7-point BIRADS scale as well as lesion vascularity and diagnostic confidence. Parametric volumes were constructed from time-intensity curves for vascular heterogeneity, perfusion, and area under the curve. Diagnostic accuracy was determined relative to pathology using receiver operating characteristic (ROC) and reverse, step-wise logistical regression analyses. The κ-statistic was calculated for inter-reader agreement. RESULTS: Data were successfully acquired in 219 cases and biopsies indicated 164 (75%) benign and 55 (25%) malignant lesions. SHI depicted more anastomoses and vascularity than HI (P < .021), but there were no differences by pathology (P > .27). Ultrasound achieved accuracies of 82 to 85%, which was significantly better than standard-of-care imaging (72%; P < .03). SHI increased diagnostic confidence by 3 to 6% (P < .05), but inter-reader agreements were medium to low (κ < 0.52). The best regression model achieved 97% accuracy by combining clinical reads and parametric SHI. CONCLUSIONS: Combining quantitative 3D SHI parameters and clinical assessments improves the characterization of suspicious breast lesions.


Subject(s)
Breast Neoplasms , Contrast Media , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional/methods , Prospective Studies , Ultrasonography/methods , Ultrasonography, Doppler/methods
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3813-3816, 2021 11.
Article in English | MEDLINE | ID: mdl-34892066

ABSTRACT

Ultrasound imaging can be used to visualize the spinal cord and assess localized cord perfusion. We present in vivo data in an ovine model undergoing spinal cord stimulation and propose development of transcutaneous US imaging as a potential non-invasive imaging modality in spinal cord injury.Clinical Relevance- Ultrasound imaging can be used to aid in prognosis and diagnosis by providing qualitative and quantitative characterization of the spinal cord. This modality can be developed as a low cost, portable, and non-invasive imaging technique in spinal injury patients.


Subject(s)
Spinal Cord Injuries , Animals , Humans , Monitoring, Intraoperative , Perfusion , Sheep , Spinal Cord Injuries/diagnostic imaging , Ultrasonography
9.
Front Endocrinol (Lausanne) ; 12: 627698, 2021.
Article in English | MEDLINE | ID: mdl-34093429

ABSTRACT

Background: Gray-scale, B-mode ultrasound (US) imaging is part of the standard clinical procedure for evaluating thyroid nodules (TNs). It is limited by its instrument- and operator-dependence and inter-observer variability. In addition, the accepted high-risk B-mode US TN features are more specific for detecting classic papillary thyroid cancer rather than the follicular variant of papillary thyroid cancer or follicular thyroid cancer. Quantitative ultrasound (QUS) is a technique that can non-invasively assess properties of tissue microarchitecture by exploiting information contained in raw ultrasonic radiofrequency (RF) echo signals that is discarded in conventional B-mode imaging. QUS provides quantitative parameter-value estimates that are a function of the properties of US scatterers and microarchitecture of the tissue. The purpose of this preliminary study was to assess the performance of QUS parameters in evaluating benign and malignant thyroid nodules. Methods: Patients from the Thyroid Health Center at the Boston Medical Center were recruited to participate. B-mode and RF data were acquired and analyzed in 225 TNs (24 malignant and 201 benign) from 208 patients. These data were acquired either before (167 nodules) or after (58 nodules) subjects underwent fine-needle biopsy (FNB). The performance of a combination of QUS parameters (CQP) was assessed and compared with the performance of B-mode risk-stratification systems. Results: CQP produced an ROC AUC value of 0.857 ± 0.033 compared to a value of 0.887 ± 0.033 (p=0.327) for the American College of Radiology Thyroid Imaging, Reporting and Data System (ACR TI-RADS) and 0.880 ± 0.041 (p=0.367) for the American Thyroid Association (ATA) risk-stratification system. Furthermore, using a CQP threshold of 0.263 would further reduce the number of unnecessary FNBs in 44% of TNs without missing any malignant TNs. When CQP used in combination with ACR TI-RADS, a potential additional reduction of 49 to 66% in unnecessary FNBs was demonstrated. Conclusion: This preliminary study suggests that QUS may provide a method to classify TNs when used by itself or when combined with a conventional gray-scale US risk-stratification system and can potentially reduce the need to biopsy TNs.


Subject(s)
Adenocarcinoma, Follicular/diagnostic imaging , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Gland/diagnostic imaging , Thyroid Neoplasms/diagnostic imaging , Thyroid Nodule/diagnostic imaging , Ultrasonography/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Assessment
10.
Cancer Biol Ther ; 22(3): 204-215, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33691611

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the modern world, in part due to poor delivery of chemotherapeutics. Sonoporation can be used to enhance the efficacy of standard of care therapies for PDAC. Using xenograft models of PDAC we investigate sonoporation using four ifferent ultrasound contrast agents (UCAs) and two ultrasound regimens to identify the ideal parameters to increase therapeutic efficacy. MIA-PaCa2 xenografts in over 175 immunodeficient mice were treated with gemcitabine and paclitaxel and subjected to low or high power ultrasound (60 and 200 mW/cm2 respectively) in conjunction with one of four different UCAs. The UCAs investigated were Definity®, SonoVue®, Optison™ or Sonazoid™. Tumor volumes, vascularity, hemoglobin, and oxygenation were measured and compared to controls. High power treatment in conjunction with Sonazoid sonoporation led to significantly smaller tumors when started early (tumors ~50mm3; p = .0105), while no UCAs significantly increased efficacy in the low power cohort. This trend was also found in larger tumors (~250mm3) where all four UCA agents significantly increased therapeutic efficacy in the high power group (p < .01), while only Definity and SonoVue increased efficacy in the low power cohort (p < .03). Overall, the higher power ultrasound treatment modality was more consistently effective at decreasing tumor volume and increasing vascularity characteristics. In conclusion, Sonazoid was the most consistently effective UCA at decreasing tumor volume and increasing vascularity. Thus, we are pursuing a larger phase II clinical trial to validate the increased efficacy of sonoporation in conjunction with chemotherapy in PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Microbubbles/standards , Sonication/methods , Adenocarcinoma , Animals , Carcinoma, Pancreatic Ductal/mortality , Cell Line, Tumor , Disease Models, Animal , Humans , Male , Mice , Survival Analysis
11.
Dig Dis Sci ; 66(12): 4354-4360, 2021 12.
Article in English | MEDLINE | ID: mdl-33392869

ABSTRACT

BACKGROUND: Portal hypertension is the underlying cause of most complications associated with cirrhosis, with the hepatic venous pressure gradient (HVPG) used for diagnosis and disease progression. Subharmonic imaging (SHI) is a contrast-specific imaging technique receiving at half the transmit frequency resulting in better tissue suppression. AIMS: To determine whether the presence of optimized SHI signals inside the hepatic vein can be used as a screening test for portal hypertension. METHODS: This prospective trial had 131 patients undergoing SHI examination of portal and hepatic veins using a modified Logiq 9 scanner (GE, Waukesha, WI). Images acquired after infusion of the ultrasound contrast agent Sonazoid (GE Healthcare, Oslo, Norway) were assessed for the presence of optimized SHI signals in the hepatic vein and compared to the HVPG values obtained as standard of care. RESULTS: Of 131 cases, 64 had increased HVPG values corresponding to subclinical (n = 31) and clinical (n = 33) portal hypertension (> 5 and > 10 mmHg, respectively), and 67 had normal HVPG values (< 5 mmHg). Two readers performed independent, binary qualitative assessments of the acquired digital clips. Reader one (experienced radiologist) achieved for the subclinical subgroup sensitivity of 98%, specificity of 88%, and ROC area of 0.93 and for the clinical subgroup sensitivity of 100% and specificity of 61%, with an ROC area of 0.74. Reader two (less experienced radiologist) achieved for the subclinical subgroup sensitivity of 77%, specificity of 76%, and ROC area of 0.76 and for the clinical subgroup sensitivity of 88% and specificity of 63%, with an ROC area of 0.70. Readers agreement was of 83% with kappa value of 0.66. CONCLUSION: The presence of optimized SHI signals inside the hepatic vein can be a qualitative screening test for portal hypertension, which could reduce the need for invasive diagnostic procedures.


Subject(s)
Hepatic Veins/diagnostic imaging , Hypertension, Portal/diagnostic imaging , Ultrasonography/methods , Adult , Aged , Aged, 80 and over , Female , Ferric Compounds , Humans , Iron , Male , Middle Aged , Oxides , Prospective Studies , Young Adult
12.
Acad Radiol ; 28 Suppl 1: S128-S137, 2021 11.
Article in English | MEDLINE | ID: mdl-33341374

ABSTRACT

RATIONALE AND OBJECTIVE: Subharmonic aided pressure estimation (SHAPE) is based on the inverse relationship between the subharmonic amplitude of ultrasound contrast microbubbles and ambient pressure. The aim of this study was to verify if SHAPE can accurately monitor disease progression in patients identified with portal hypertension. MATERIALS & METHODS: A modified Logiq 9 scanner with a 4C curvi-linear probe (GE, Waukesha, WI) was used to acquire SHAPE data (transmitting and receiving at 2.5 and 1.25 MHz, respectively) using Sonazoid (GE Healthcare, Oslo, Norway; FDA IND 124,465). Twenty-one (median age 59 years; 12 Males) of the 178 patients enrolled in this institutional review board approved study (14F.113) were identified as having clinically significant portal hypertension based on their hepatic venous pressure gradient results ≥ 10 mmHg. Repeat SHAPE examinations were done every 6.2 months. Liver function tests and clinical indicators were used to establish treatment response. RESULTS: Of the 21 portal hypertensive subjects, 11 had successful follow up scans with an average follow up time of 6.2 months. There was a significantly larger SHAPE signal reduction in the group who were classified as treatment responders (n = 10; -4.01±3.61 dB) compared to the single nonresponder (2.33 dB; p < 0.001). Results for responders matched the corresponding clinical outcomes of improved model for end stage liver disease (MELD) scores, improvement in underlying cause of portal hypertension, improved liver function tests and reduced ascites. CONCLUSION: SHAPE can potentially monitor disease progression in portal hypertensive patients and hence, may help clinicians in patient management. A larger study would further validate this claim.


Subject(s)
End Stage Liver Disease , Hypertension, Portal , Humans , Hypertension, Portal/complications , Hypertension, Portal/diagnostic imaging , Liver Cirrhosis , Male , Microbubbles , Middle Aged , Severity of Illness Index , Ultrasonography
13.
Radiology ; 298(1): 104-111, 2021 01.
Article in English | MEDLINE | ID: mdl-33201789

ABSTRACT

Background The current standard for assessing the severity of portal hypertension is the invasive acquisition of hepatic venous pressure gradient (HVPG). A noninvasive US-based technique called subharmonic-aided pressure estimation (SHAPE) could reduce risk and enable routine acquisition of these pressure estimates. Purpose To compare quantitative SHAPE to HVPG measurements to diagnose portal hypertension in participants undergoing a transjugular liver biopsy. Materials and Methods This was a prospective cross-sectional trial conducted at two hospitals between April 2015 and March 2019 (ClinicalTrials.gov identifier, NCT02489045). This trial enrolled participants who were scheduled for transjugular liver biopsy. After standard-of-care transjugular liver biopsy and HVPG pressure measurements, participants received an infusion of a US contrast agent and saline. During infusion, SHAPE data were collected from a portal vein and a hepatic vein, and the difference was compared with HVPG measurements. Correlations between data sets were determined by using the Pearson correlation coefficient, and statistical significance between groups was determined by using the Student t test. Receiver operating characteristic analysis was performed to determine the sensitivity and specificity of SHAPE. Results A total of 125 participants (mean age ± standard deviation, 59 years ± 12; 80 men) with complete data were included. Participants at increased risk for variceal hemorrhage (HVPG ≥12 mm Hg) had a higher mean SHAPE gradient compared with participants with lower HVPGs (0.79 dB ± 2.53 vs -4.95 dB ± 3.44; P < .001), which is equivalent to a sensitivity of 90% (13 of 14; 95% CI: 88, 94) and a specificity of 80% (79 of 99; 95% CI: 76, 84). The SHAPE gradient between the portal and hepatic veins was in good overall agreement with the HVPG measurements (r = 0.68). Conclusion Subharmonic-aided pressure estimation is an accurate noninvasive technique for detecting clinically significant portal hypertension. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kiessling in this issue.


Subject(s)
Contrast Media , Hypertension, Portal/diagnostic imaging , Image Enhancement/methods , Ultrasonography/methods , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Hypertension, Portal/physiopathology , Male , Middle Aged , Portal Vein/diagnostic imaging , Portal Vein/physiopathology , Prospective Studies , Sensitivity and Specificity
14.
J Vis Exp ; (166)2020 12 05.
Article in English | MEDLINE | ID: mdl-33346203

ABSTRACT

Noninvasive, accurate measurement of pressures within the human body has long been an important but elusive clinical goal. Contrast agents for ultrasound imaging are gas-filled, encapsulated microbubbles (diameter < 10 µm) that traverse the entire vasculature and enhance signals by up to 30 dB. These microbubbles also produce nonlinear oscillations at frequencies ranging from the subharmonic (half of the transmit frequency) to higher harmonics. The subharmonic amplitude has an inverse linear relationship with the ambient hydrostatic pressure. Here an ultrasound system capable of performing real-time, subharmonic aided pressure estimation (SHAPE) is presented. During ultrasound contrast agent infusion, an algorithm for optimizing acoustic outputs is activated. Following this calibration, subharmonic microbubble signals (i.e., SHAPE) have the highest sensitivity to pressure changes and can be used to noninvasively quantify pressure. The utility of the SHAPE procedure for identifying portal hypertension in the liver is the emphasis here, but the technique has applicability across many clinical scenarios.


Subject(s)
Blood Pressure , Contrast Media/chemistry , Hypertension, Portal/diagnosis , Hypertension, Portal/physiopathology , Ultrasonography/methods , Algorithms , Calibration , Humans , Hypertension, Portal/diagnostic imaging , Liver/diagnostic imaging , Microbubbles
16.
J Ultrasound Med ; 39(5): 977-985, 2020 May.
Article in English | MEDLINE | ID: mdl-31769529

ABSTRACT

OBJECTIVES: This pilot study evaluated whether contrast-enhanced subharmonic imaging (SHI) could be used to characterize adnexal masses before surgical intervention. METHODS: Ten women (with 12 lesions) scheduled for surgery of an ovarian mass underwent an SHI examination of their adnexal region using a modified LOGIQ E9 scanner (GE Healthcare, Waukesha, WI) with an endocavitary transducer, in which digital clips were acquired by pulse destruction-replenishment SHI across the lesions. Time-intensity curves were created offline to quantitatively evaluate SHI parameters (fractional tumor perfusion, peak contrast intensity, time to peak contrast enhancement, and area under the time-intensity curve), which were compared to pathologic characterizations of the lesions. RESULTS: Of the 12 masses, 8 were benign, and 4 were malignant. A qualitative analysis of the SHI images by an experienced radiologist resulted in diagnostic accuracy of 70%, compared to 56% without contrast, whereas an inexperienced radiologist improved from 50% to 58% accuracy, demonstrating the benefit of SHI. A quantitative analysis of SHI parameters produced diagnostic accuracy as high as 81%. Peak contrast intensity was significantly greater in malignant than benign masses (mean ± SD, 0.109 ± 0.088 versus 0.046 ± 0.030 arbitrary units; P = .046). Malignant masses also showed significantly greater perfusion than benign masses (24.79% ± 25.34% versus 7.62% ± 6.50%; P = .045). When the radiologist reads were combined with the most predictive quantitative SHI parameter (percent perfusion), diagnostic accuracy improved to 84% for the experienced radiologist and 96% for the novice radiologist. CONCLUSIONS: Results indicate that SHI for presurgical characterization of adnexal masses may improve the determination of malignancy and diagnostic accuracy, albeit based on a small sample size.


Subject(s)
Adnexal Diseases/diagnostic imaging , Contrast Media , Image Enhancement/methods , Ovarian Neoplasms/diagnostic imaging , Ultrasonography/methods , Adnexa Uteri/diagnostic imaging , Adult , Aged , Diagnosis, Differential , Female , Humans , Middle Aged , Pilot Projects , Reproducibility of Results
17.
Acad Radiol ; 27(8): 1065-1074, 2020 08.
Article in English | MEDLINE | ID: mdl-31859210

ABSTRACT

RATIONALE AND OBJECTIVES: Breast cancer is the leading type of cancer among women. Visualization and characterization of breast lesions based on vascularity kinetics was evaluated using three-dimensional (3D) contrast-enhanced ultrasound imaging in a clinical study. MATERIALS AND METHODS: Breast lesions (n = 219) were imaged using power Doppler imaging (PDI), 3D contrast-enhanced harmonic imaging (HI), and 3D contrast-enhanced subharmonic imaging (SHI) with a modified Logiq 9 ultrasound scanner using a 4D10L transducer. Quantitative metrics of vascularity derived from 3D parametric volumes (based on contrast perfusion; PER and area under the curve; AUC) were generated by off-line processing of contrast wash-in and wash-out. Diagnostic accuracy of these quantitative vascular parameters was assessed with biopsy results as the reference standard. RESULTS: Vascularity was observed with PDI in 93 lesions (69 benign and 24 malignant), 3D HI in 8 lesions (5 benign and 3 malignant), and 3D SHI in 83 lesions (58 benign and 25 malignant). Diagnostic accuracy for vascular heterogeneity, PER, and AUC ranged from 0.52 to 0.75, while the best logistical regression model (vascular heterogeneity ratio, central PER, and central AUC) reached 0.90. CONCLUSION: 3D SHI successfully detects contrast agent flow in breast lesions and characterization of these lesions based on quantitative measures of vascular heterogeneity and 3D parametric volumes is promising.


Subject(s)
Breast Neoplasms , Contrast Media , Breast Neoplasms/diagnostic imaging , Diagnosis, Differential , Female , Humans , Imaging, Three-Dimensional , Ultrasonography , Ultrasonography, Doppler
18.
Nat Commun ; 10(1): 952, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862827

ABSTRACT

Tools for noninvasively modulating neural signaling in peripheral organs will advance the study of nerves and their effect on homeostasis and disease. Herein, we demonstrate a noninvasive method to modulate specific signaling pathways within organs using ultrasound (U/S). U/S is first applied to spleen to modulate the cholinergic anti-inflammatory pathway (CAP), and US stimulation is shown to reduce cytokine response to endotoxin to the same levels as implant-based vagus nerve stimulation (VNS). Next, hepatic U/S stimulation is shown to modulate pathways that regulate blood glucose and is as effective as VNS in suppressing the hyperglycemic effect of endotoxin exposure. This response to hepatic U/S is only found when targeting specific sub-organ locations known to contain glucose sensory neurons, and both molecular (i.e. neurotransmitter concentration and cFOS expression) and neuroimaging results indicate US induced signaling to metabolism-related hypothalamic sub-nuclei. These data demonstrate that U/S stimulation within organs provides a new method for site-selective neuromodulation to regulate specific physiological functions.


Subject(s)
Neural Pathways/physiology , Neuroimmunomodulation/physiology , Ultrasonic Therapy/methods , Animals , Liver/immunology , Liver/innervation , Liver/physiology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neural Pathways/immunology , Organ Specificity , Rats , Rats, Sprague-Dawley , Spleen/immunology , Spleen/innervation , Spleen/physiology , Vagus Nerve Stimulation
19.
Ultrason Imaging ; 41(1): 35-48, 2019 01.
Article in English | MEDLINE | ID: mdl-30417745

ABSTRACT

Subharmonic-aided pressure estimation (SHAPE) estimates hydrostatic pressure using the inverse relationship with subharmonic amplitude variations of ultrasound contrast agents (UCAs). We studied the impact of varying incident acoustic outputs (IAO), UCA concentration, and hematocrit on SHAPE. A Logiq 9 scanner with a 4C curvilinear probe (GE, Milwaukee, Wisconsin) was used with Sonazoid (GE Healthcare, Oslo, Norway) transmitting at 2.5 MHz and receiving at 1.25 MHz. An improved IAO selection algorithm provided improved correlations ( r from -0.85 to -0.95 vs. -0.39 to -0.98). There was no significant change in SHAPE gradient as the pressure increased from 10 to 40 mmHg and hematocrit concentration was tripled from 1.8 to 4.5 mL/L (Δ0.00-0.01 dB, p = 0.18), and as UCA concentration was increased from 0.2 to 1.2 mL/L (Δ0.02-0.05 dB, p = 0.75). The results for the correlation between the SHAPE gradient and hematocrit values for patients ( N = 100) in an ongoing clinical trial were also calculated showing a poor correlation value of 0.14. Overall, the SHAPE gradient is independent of hematocrit and UCA concentration. An improved algorithm for IAO selection will make SHAPE more accurate.


Subject(s)
Contrast Media , Image Enhancement/methods , Ultrasonography/methods , Algorithms , Humans , In Vitro Techniques , Reproducibility of Results , Retrospective Studies
20.
Psychiatr Q ; 89(3): 747-756, 2018 09.
Article in English | MEDLINE | ID: mdl-29552711

ABSTRACT

Social information processing theory hypothesizes that aggressive children pay more attention to cues of hostility and threat in others' behavior, consequently leading to over-interpretation of others' behavior as hostile. While there is abundant evidence of aggressive children demonstrating hostile attribution biases, less well documented is whether such biases stem from over-attendance and hypersensitivity to hostile cues in social situations. Over-attendance to hostile cues would be typified by deviations at any stage of the multi-stage process of social information processing models. While deviations at later stages in social information processing models are associated with aggressive behavior in children, the initial step of encoding has historically been difficult to empirically measure, being a low level automatic process unsuitable for self-report. We employed eye-tracking methodologies to better understand the visual encoding of such social information. Eye movements of ten 13-18 year-old children referred from clinical and non-clinical populations were recorded in real time while the children viewed scenarios varying between hostile, non-hostile and ambiguous social provocation. In addition, the children completed a brief measure of risk of aggression. Aggressive children did attend more to the social scenarios with hostile cues, in particular attending longest to those hostile scenarios where the actor in the scenario had a congruent emotional response. These findings corroborate social information processing theory and the traditional bottom-up processing hypotheses that aggressive behavior relates to increased attention to hostile cues.


Subject(s)
Aggression/psychology , Fixation, Ocular/physiology , Social Behavior , Social Perception , Adolescent , Female , Humans , Interpersonal Relations , Linear Models , Male , Psychiatric Status Rating Scales , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...