Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Environ Pollut ; 338: 122680, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37821040

ABSTRACT

Indoor airborne ultrafine particles (UFPs) are mainly originated from occupant activities, such as candle burning and cooking. Elevated exposure to UFPs has been found to increase oxidative stress and cause DNA damage. UFPs originating from indoor sources undergo dynamic aerosol transformation mechanisms. This study investigates the dynamics of UFPs following episodic indoor releases of the six distinct emission sources: 1) candle, 2) gas stove, 3) clothes dryer, 4) tea & toast, 5) broiled fish, and 6) incense. Based on the analytical model of aerosol dynamic processes, this study reports size-resolved source emission rates along with relative contributions of coagulation, deposition, and ventilation to the particle size distribution dynamics. The study findings indicate a significant variation in the geometric mean diameter (GMD) and size-resolved number concentration over time for the sources that emit a substantial amount of UFPs smaller than 10 nm. As the emission progresses, the UFP number concentrations increase in a log-normal distribution, while the GMD shows a tendency to increase over time. The observed result suggests that coagulation can have a considerable impact on UFP number concentration and size, even during the indoor UFP emission. The estimated emission rates of the six indoor sources appear to follow a log-normal distribution while the emission rate ranges from 107 min-1 to 1012 min-1. The indoor UFP concentration and size distribution dynamics are substantially affected by the interplay of the three aerosol loss mechanisms that compete with each other, and this impact varies according to the source type and the indoor environmental conditions. Ultimately, using the aerosol transformation mechanisms examined in this study, researchers can refine exposure assessment for epidemiological studies on indoor ultrafine particles.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Particulate Matter/analysis , Air Pollutants/analysis , Particle Size , Environmental Monitoring , Air Pollution, Indoor/analysis , Aerosols
2.
Sci Total Environ ; 893: 164874, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37336395

ABSTRACT

Some manufacturers of low-cost particle sensors use proprietary algorithms to estimate particle mass concentrations such as PM2.5. Often little or no information is given regarding the calibration aerosol, how the algorithm was created or tested, or how the mass was estimated from the particle number counts. If the algorithm is faulty in some way, researchers have little ability to correct it in a fundamental way, although they can multiply the output by some calibration factor to match the particular aerosol combination they are studying. However, the adjustment still requires the use of the proprietary algorithm, which may have quirks that make it impossible to fix completely using a single calibration factor. It might be possible in some cases to avoid using the proprietary algorithm at all. That is the approach of this study. The low-cost sensor studied is the Plantower PMS 5003, and the algorithm is the CF_1 algorithm offered by the manufacturer. Data from a six-month study of four collocated PurpleAir PA-II monitors, each containing two independent Plantower PMS 5003 sensors, were collected. Two of these monitors had previously been calibrated against research-grade monitors. The best-fitting model for PM1 was found to be of the form PM1 = a*(N1 + N2) + d, where N1 and N2 are the particle numbers in the size categories 0.3-0.5 µm and 0.5-1 µm, and d is an additive constant. The best-fitting model for PM2.5 was of the form a*(N1 + N2) + b*N3 + d, where N3 is the number of particles in the third size fraction (1-2.5 µm). The individual models for all 8 sensors matched the reported CF_1 values for both PM1 and PM2.5 with R2 values exceeding 0.99, intercepts near zero, and slopes in the 0.99-1.01 range. The proposed models may also explain why the CF_1 algorithm reports values of zero for a substantial portion of PM1 and PM2.5 estimates. General models capable of being applied to other datasets were developed and estimated to have mean absolute errors (MAEs) <1 µg/m3.

3.
Sensors (Basel) ; 23(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177591

ABSTRACT

Spatial variation of indoor and outdoor PM2.5 within three states for a five-year period is studied using regulatory and low-cost PurpleAir monitors. Most of these data were collected in an earlier study (Wallace et al., 2022 Indoor Air 32:13105) investigating the relative contribution of indoor-generated and outdoor-infiltrated particles to indoor exposures. About 260 regulatory monitors and ~10,000 outdoor and ~4000 indoor PurpleAir monitors are included. Daily mean PM2.5 concentrations, correlations, and coefficients of divergence (COD) are calculated for pairs of monitors at distances ranging from 0 (collocated) to 200 km. We use a transparent and reproducible open algorithm that avoids the use of the proprietary algorithms provided by the manufacturer of the sensors in PurpleAir PA-I and PA-II monitors. The algorithm is available on the PurpleAir API website under the name "PM2.5_alt". This algorithm is validated using several hundred pairs of regulatory and PurpleAir monitors separated by up to 0.5 km. The PM2.5 spatial variation outdoors is homogeneous with high correlations to at least 10 km, as shown by the COD index under 0.2. There is also a steady improvement in outdoor PM2.5 concentrations with increasing distance from the regulatory monitors. The spatial variation of indoor PM2.5 is not homogeneous even at distances < 100 m. There is good agreement between PurpleAir outdoor monitors located <100 m apart and collocated Federal Equivalent Methods (FEM).

4.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772199

ABSTRACT

Low-cost monitors make it possible now for the first time to collect long-term (months to years) measurements of potential indoor exposure to fine particles. Indoor exposure is due to two sources: particles infiltrating from outdoors and those generated by indoor activities. Calculating the relative contribution of each source requires identifying an infiltration factor. We develop a method of identifying periods when the infiltration factor is not constant and searching for periods when it is relatively constant. From an initial regression of indoor on outdoor particle concentrations, a Forbidden Zone can be defined with an upper boundary below which no observations should appear. If many observations appear in the Forbidden Zone, they falsify the assumption of a single constant infiltration factor. This is a useful quality assurance feature, since investigators may then search for subsets of the data in which few observations appear in the Forbidden Zone. The usefulness of this approach is illustrated using examples drawn from the PurpleAir network of optical particle monitors. An improved algorithm is applied with reduced bias, improved precision, and a lower limit of detection than either of the two proprietary algorithms offered by the manufacturer of the sensors used in PurpleAir monitors.

5.
Indoor Air ; 32(9): e13105, 2022 09.
Article in English | MEDLINE | ID: mdl-36168225

ABSTRACT

Low-cost monitors have made it possible for the first time to measure indoor PM2.5 concentrations over extended periods of time (months to years). Coupled with concurrent outdoor measurements, these indoor measurements can be divided into particles entering the building from outdoors and particles generated from indoor activities. Indoor-generated particles are not normally considered in epidemiological studies, but they can have health effects (e.g., passive smoking and high-temperature cooking). We employed The Random Component Superposition (RCS) regression model to estimate infiltration factors for up to 790 000 matched indoor and outdoor sites. The median infiltration factors for subgroups in the 3-state region ranged between 0.22 and 0.24, with an interquartile range (IQR) of 0.13-0.40. These infiltration factors allowed calculation of both the indoor-generated and outdoor-infiltrated PM2.5 . Indoor-generated particles contributed, on average, 46%-52% of total indoor PM2.5 concentrations. However, the site-specific fractional contribution of these indoor sources to total indoor PM2.5 ranged from near-zero to nearly 100%. The influence of indoor-generated particles on potential exposures varied widely relative to outdoor concentrations. The greatest influence of indoor-generated particles occurred at low-to-moderate daily mean outdoor PM2.5 levels around 6 µg/m3 and was negligible at outdoor concentrations >20 µg/m3 . Epidemiological studies incorporating only estimated exposures due to the particles of ambient origin may benefit from the newly available knowledge of long-term indoor-generated particle concentrations.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Tobacco Smoke Pollution , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Oregon , Particle Size , Particulate Matter/analysis , Washington
6.
Sci Total Environ ; 852: 158244, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36037897

ABSTRACT

The widespread legalization of recreational marijuana raises growing concerns about exposure to secondhand marijuana smoke. An important location for marijuana smoking is the home, but few measurements of air pollutant concentrations in the home are available for a marijuana joint fully smoked in one of its rooms. We used research grade calibrated real-time continuous PM2.5 air monitors in controlled 5-hour experiments to measure fine particle concentrations in the 9 rooms of a detached, two-story, 4-bedroom home with either a tobacco cigarette or a marijuana joint fully smoked in the home's living room. The master bedroom's door was closed, and the other bedroom doors were open, as was the custom of occupants of this residence. In two experiments with a Marlboro tobacco cigarette smoked by a machine in the living room, the 5-hour mean PM2.5 concentrations in 9 rooms of the home were 15.2 µg/m3 (SD 5.6 µg/m3) and 15.0 µg/m3 (SD 3.7 µg/m3). In contrast, three experiments with pre-rolled marijuana joints smoked in the same manner in the living room produced 5-hour mean PM2.5 concentrations of 38.9 µg/m3 (SD 10.6 µg/m3), 79.8 µg/m3 (SD 25.7 µg/m3) and 80.7 µg/m3 (SD 28.8 µg/m3). In summary, the average secondhand PM2.5 concentrations from smoking a marijuana joint in the home were found to be 4.4 times as great as the secondhand PM2.5 concentrations from smoking a tobacco cigarette. Opening 3 windows by 12.7 cm reduced the high PM2.5 concentrations from marijuana smoking by 67 %, but the PM2.5 levels still exceeded those produced by tobacco smoking with the windows closed.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cannabis , Tobacco Products , Tobacco Smoke Pollution , Nicotiana , Tobacco Smoke Pollution/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Particulate Matter/analysis
7.
Sensors (Basel) ; 22(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35808235

ABSTRACT

Large quantities of real-time particle data are becoming available from low-cost particle monitors. However, it is crucial to determine the quality of these measurements. The largest network of monitors in the United States is maintained by the PurpleAir company, which offers two monitors: PA-I and PA-II. PA-I monitors have a single sensor (PMS1003) and PA-II monitors employ two independent PMS5003 sensors. We determine a new calibration factor for the PA-I monitor and revise a previously published calibration algorithm for PA-II monitors (ALT-CF3). From the PurpleAir API site, we downloaded 83 million hourly average PM2.5 values in the PurpleAir database from Washington, Oregon, and California between 1 January 2017 and 8 September 2021. Daily outdoor PM2.5 means from 194 PA-II monitors were compared to daily means from 47 nearby Federal regulatory sites using gravimetric Federal Reference Methods (FRM). We find a revised calibration factor of 3.4 for the PA-II monitors. For the PA-I monitors, we determined a new calibration factor (also 3.4) by comparing 26 outdoor PA-I sites to 117 nearby outdoor PA-II sites. These results show that PurpleAir PM2.5 measurements can agree well with regulatory monitors when an optimum calibration factor is found.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Calibration , California , Environmental Monitoring/methods , Oregon , Particulate Matter/analysis , Washington
8.
Sensors (Basel) ; 22(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408369

ABSTRACT

Low-cost particle sensors are now used worldwide to monitor outdoor air quality. However, they have only been in wide use for a few years. Are they reliable? Does their performance deteriorate over time? Are the algorithms for calculating PM2.5 concentrations provided by the sensor manufacturers accurate? We investigate these questions using continuous measurements of four PurpleAir monitors (8 sensors) under normal conditions inside and outside a home for 1.5-3 years. A recently developed algorithm (called ALT-CF3) is compared to the two existing algorithms (CF1 and CF_ATM) provided by the Plantower manufacturer of the PMS 5003 sensors used in PurpleAir PA-II monitors. Results. The Plantower CF1 algorithm lost 25-50% of all indoor data due in part to the practice of assigning zero to all concentrations below a threshold. None of these data were lost using the ALT-CF3 algorithm. Approximately 92% of all data showed precision better than 20% using the ALT-CF3 algorithm, but only approximately 45-75% of data achieved that level using the Plantower CF1 algorithm. The limits of detection (LODs) using the ALT-CF3 algorithm were mostly under 1 µg/m3, compared to approximately 3-10 µg/m3 using the Plantower CF1 algorithm. The percentage of observations exceeding the LOD was 53-92% for the ALT-CF3 algorithm, but only 16-44% for the Plantower CF1 algorithm. At the low indoor PM2.5 concentrations found in many homes, the Plantower algorithms appear poorly suited.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Algorithms , Environmental Monitoring , Limit of Detection , Particle Size , Particulate Matter/analysis
9.
Sci Total Environ ; 802: 149897, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34464798

ABSTRACT

We conducted 35 experiments for spatial measurement of marijuana aerosols in a current smoker's residential spaces. Fine particulate matter (PM2.5) concentrations were measured every second at 1, 2, and 3 m horizontal distances from the smoker who performed prescribed 5-min smoking and vaping activities. In each experiment, five SidePak monitors measured PM2.5 concentrations at five different angles facing the front of the smoker, representing the worst-case exposures. We studied the effect of distance from the smoker for two marijuana sources - smoking a marijuana cigarette, or joint, and vaping a liquid-cartridge vaping pen. Experiments were conducted in the family room indoors and in the backyard outdoors where the smoker normally consumes marijuana. Indoor marijuana vaping had higher average exposures (5-min PM2.5) at 1 m distance than indoor marijuana smoking, but the levels from indoor vaping decreased more rapidly with distance (e.g., 77% reduction for vaping versus 33% for smoking from 1 to 2 m). Smoking and vaping in the outdoor environment reduce the average exposures down to <5% of the indoor levels at each distance. Cumulative frequency distributions of the 1-s PM2.5 concentrations revealed the frequencies of exceeding any selected transient peak exposure limit at a given distance. The frequency of exceedance decreased more quickly with distance for vaping than for smoking. Smoking and vaping outdoors made the transient peak exposures close to the source much less frequent than smoking and vaping indoors (e.g., <1% exceeded 1000 µg/m3 outdoors versus >20% indoors at 1 m). Plotting the frequency of exceedance versus distance could offer additional guidance for a recommended minimum distance from a marijuana source.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Marijuana Smoking , Vaping , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Particle Size , Particulate Matter/analysis
10.
Environ Sci Technol ; 55(14): 9730-9739, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34213881

ABSTRACT

Airborne nanoparticles are frequently released in occupied spaces due to episodic indoor source activities. Once generated, nanoparticles undergo aerosol transformation processes such as coagulation and deposition. These aerosol processes lead to changes in particle concentration and size distribution over time and accordingly affect human exposure to nanoparticles. The present study establishes a framework for an indoor particle dynamic model that can predict time- and size-dependent particle concentrations after episodic indoor emission events. The model was evaluated with six experimental data sets obtained from previous measurement studies in the literature. The indoor particle dynamic model quantified the relative contributions of three particle loss mechanisms (i.e., coagulation, deposition, and ventilation) to the total reduction in number concentration. The results show that particle coagulation and indoor surface deposition are two dominant processes responsible for temporal changes in particle size and concentration following indoor emission events. The first-order equivalent coagulation loss rate notably varies with indoor emission source and accounts for up to 59% of the total particle loss for burning a candle, 42% for broiling a fish, and 10% for burning incense. The results reveal that while the coagulation loss rate changes markedly with the particle concentration and source type, the deposition loss rate is more dependent on particle size. Compared to coagulation and deposition, the effect of ventilation is marginal for most of the nanoparticle emission events indoors; however, ventilation loss becomes pronounced with the decrease of particle concentration below 5 × 104 cm-3, especially for particles larger than 100 nm in aerodynamic diameter.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Nanoparticles , Aerosols , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Humans , Particle Size , Ventilation
11.
Environ Pollut ; 276: 116763, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33631689

ABSTRACT

Epidemiological research on the adverse health outcomes due to PM2.5 exposure frequently relies on measurements from regulatory air quality monitors to provide ambient exposure estimates, whereas personal PM2.5 exposure may deviate from ambient concentrations due to outdoor infiltration and contributions from indoor sources. Research in quantifying infiltration factors (Finf), the fraction of outdoor PM2.5 that infiltrates indoors, has been historically limited in space and time due to the high costs of monitor deployment and maintenance. Recently, the growth of openly accessible, citizen-based PM2.5 measurements provides an unprecedented opportunity to characterize Finf at large spatiotemporal scales. In this analysis, 91 consumer-grade PurpleAir indoor/outdoor monitor pairs were identified in California (41 residential houses and 50 public/commercial buildings) during a 20-month period with around 650000 h of paired PM2.5 measurements. An empirical method was developed based on local polynomial regression to estimate site-specific Finf. The estimated site-specific Finf had a mean of 0.26 (25th, 75th percentiles: [0.15, 0.34]) with a mean bootstrap standard deviation of 0.04. The Finf estimates were toward the lower end of those reported previously. A threshold of ambient PM2.5 concentration, approximately 30 µg/m3, below which indoor sources contributed substantially to personal exposures, was also identified. The quantified relationship between indoor source contributions and ambient PM2.5 concentrations could serve as a metric of exposure errors when using outdoor monitors as an exposure proxy (without considering indoor-generated PM2.5), which may be of interest to epidemiological research. The proposed method can be generalized to larger geographical areas to better quantify PM2.5 outdoor infiltration and personal exposure.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Environmental Exposure , Environmental Monitoring , Particle Size , Particulate Matter/analysis
12.
J Air Waste Manag Assoc ; 71(7): 830-843, 2021 07.
Article in English | MEDLINE | ID: mdl-32970538

ABSTRACT

Cooking is one of the most significant indoor sources of particles. This study investigated residential cooking and kitchen ventilation behaviors in Canadian homes, using data from 132 households in Halifax and Edmonton. Only 27% of the cooking activities were conducted with added ventilation (range hood use 10%, window opening 15%, and both 2%). The use pattern of the range hood was associated with mealtime and cooking method/device. The frequency of window opening was influenced by season and did not show a clear linkage to ventilation for cooking. Fine particle (PM2.5) decay rates, source strengths, emission masses, and exposure levels were estimated for cooking activities under different ventilation conditions. The results demonstrated the effect of kitchen ventilation on PM2.5 removal. Using a range hood and (or) opening kitchen windows increased the geometric mean (GM) decay rate by a factor of two. The GM source strength from cooking was 0.73 mg min-1 (geometric standard deviation (GSD) = 4.3) over an average cooking time of 17 minutes (GSD = 2.6). The GM emission mass was 12.6 mg (GSD = 5.3). The GM exposure from a single cooking event was 12 µg m-3 h (GSD = 6.6). The average number of cooking events per day was 2.4 (SD = 1.5) times. Cooking contributed about 22% to the total daily PM2.5 exposure in participating homes. The frequency and duration of cooking conducted at various temporal scales (mealtime, weekday/weekend, and season), as well as the use of different methods and devices, can support more accurate modeling of the impact of cooking on indoor air quality and human exposure.Implications: The inadequate use of ventilation during cooking highlights the need for educational programs on cooking exposures and ventilation strategies, such as running a range hood fan or opening kitchen windows when possible. Exposures in newly built homes might be a bigger concern than older homes if not providing sufficient ventilation during cooking, due to the tighter building envelopes.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Canada , Cooking , Environmental Monitoring , Humans , Particulate Matter/analysis
13.
J Expo Sci Environ Epidemiol ; 31(4): 628-640, 2021 07.
Article in English | MEDLINE | ID: mdl-32678304

ABSTRACT

BACKGROUND: Exposure to traffic-related air pollution (TRAP) is associated with increased incidence of several cardiopulmonary diseases. The elevated TRAP exposures of commuting environments can result in significant contributions to daily exposures. OBJECTIVES: To assess the personal TRAP exposures (UFPs, BC, PM2.5, and PM10) of the bus transit systems of Toronto, Ottawa, and Vancouver, Canada. Personal exposure models estimated the contribution of bus commuting to daily TRAP exposures. Associations between bus type and riding exposures and bus stop/station type and waiting exposures were estimated. RESULTS: Bus commuting (4.6% of the day) contributed ~59%(SD = 15%), 60%(SD = 20%), and 57%(SD = 18%) of daily PM2.5-Ba and 70%(SD = 19%), 64%(SD = 15%), and 70%(SD = 15%) of daily PM2.5-Fe, in Toronto, Ottawa, and Vancouver, respectively. Enclosed bus stations were found to be hotspots of PM2.5 and BC. Buses with diesel particulate filters (DPFs) and hybrid diesel/electric propulsion were found to have significantly lower in-bus PM2.5, UFP, and BC relative to 1983-2003 diesel buses in each city with the exception of UFP in Vancouver. SIGNIFICANCE: Personal exposures for traffic-related air pollutants were assessed for three Canadian bus transit systems. In each system, bus commuting was estimated to contribute significantly toward daily exposures of fine-fraction Ba and Fe as well as BC. Exposures while riding were associated with bus type for several pollutants in each city. These associations suggest the use of hybrid diesel/electric buses equipped with diesel particulate filters have improved air quality for riders.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Canada , Cities , Environmental Exposure/analysis , Environmental Monitoring , Humans , Motor Vehicles , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis
14.
Indoor Air ; 29(6): 1018-1027, 2019 11.
Article in English | MEDLINE | ID: mdl-31378981

ABSTRACT

A major source of human exposure to ultrafine particles is candle use. Candles produce ultrafine particles in the size range under 10 nm, with perhaps half of the particles less than 5 nm. For these small particles at typically high concentrations, coagulation and deposition are two dominant mechanisms in aerosol size dynamics. We present an updated coagulation model capable of characterizing the relative contributions of coagulation, deposition, and air exchange rates. Size-resolved coagulation and decay rates are estimated for three types of candles. Number, area, and mass distributions are provided for 93 particle sizes from 2.33 to 64 nm. Total particle production was in the range of 1013  min-1 . Peak number, area, and mass concentrations occurred at particle sizes of <3, 20, and 40 nm, respectively. Both the number and area concentrations greatly exceeded background concentrations in the residence studied. Contributions of coagulation, deposition, and air exchange rates to particle losses were 65%, 34%, and 0.3% at high concentrations (106  cm-3 ), while they are 17%, 81%, and 1.7% at lower concentrations (3 × 104  cm-3 ), respectively. The increased particle production for the very smallest particles (2.33-2.50 nm) suggests that even smaller particles may be important to study.


Subject(s)
Aerosols/chemistry , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Fires , Particulate Matter/analysis , Housing , Humans , Inhalation Exposure/analysis , Particle Size
15.
Environ Sci Technol ; 51(10): 5713-5720, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28440082

ABSTRACT

System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM2.5 (PM = particulate matter), PM10, ultrafine particles, black carbon, and the elemental composition of PM2.5. Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM2.5 and 21.2%, 11.3% and 11.5% of daily PM2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM2.5 and its elemental components to a metro commuter's daily exposure.


Subject(s)
Air Pollutants/analysis , Air Pollution , Canada , Cities , Environmental Exposure , Environmental Monitoring , Particle Size , Particulate Matter , Transportation , Vehicle Emissions
16.
Environ Sci Technol ; 51(3): 1140-1146, 2017 02 07.
Article in English | MEDLINE | ID: mdl-27997143

ABSTRACT

Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.


Subject(s)
Air Pollution, Indoor , Housing , Air Pollutants , Cooking , Heating , Organic Chemicals , Particle Size
17.
Environ Sci Technol ; 50(18): 10031-8, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27181617

ABSTRACT

Indoor ultrafine particles (UFP, <100 nm) released from combustion and consumer products lead to elevated human exposure to UFP. UFP emitted from the sources undergo aerosol transformation processes such as coagulation and deposition. The coagulation effect can be significant during the source emission due to high concentration and high mobility of nanosize particles. However, few studies have estimated size-resolved UFP source emission strengths while considering coagulation in their theoretical and experimental research work. The primary objective of this study is to characterize UFP source strength by considering coagulation in addition to other indoor processes (i.e., deposition and ventilation) in a realistic setting. A secondary objective is to test a hypothesis that size-resolved UFP source emission rates are unimodal and log-normally distributed for three common indoor UFP sources: an electric stove, a natural gas burner, and a paraffin wax candle. Experimental investigations were performed in a full-scale test building. Size- and time-resolved concentrations of UFP ranging from 2 to 100 nm were monitored using a scanning mobility particle sizer (SMPS). Based on the temporal evolution of the particle size distribution during the source emission period, the size-dependent source emission rate was determined using a material-balance modeling approach. The results indicate that, for a given UFP source, the source strength varies with particle size and source type. The analytical model assuming a log-normally distributed source emission rate could predict the temporal evolution of the particle size distribution with reasonable accuracy for the gas stove and the candle. Including the effect of coagulation was found to increase the estimates of source strengths by up to a factor of 8. This result implies that previous studies on indoor UFP source strengths considering only deposition and ventilation might have largely underestimated the true values of UFP source strengths, especially for combustion due to the natural gas stove and the candle.


Subject(s)
Air Pollution, Indoor , Particulate Matter , Aerosols , Air Pollutants , Environmental Monitoring , Humans , Particle Size , Ventilation
18.
Environ Sci Technol ; 49(11): 6419-29, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26000896

ABSTRACT

Exposure to submicron particles (PM1) is of interest due to their possible chronic and acute health effects. Seven consecutive 24-h PM1 samples were collected during winter and summer 2010 in a total of 74 nonsmoking homes in Edmonton, Canada. Median winter concentrations of PM1 were 2.2 µg/m(3) (interquartile range, IQR = 0.8-6.1 µg/m(3)) and 3.3 µg/m(3) (IQR = 1.5-6.9 µg/m(3)) for indoors and outdoors, respectively. In the summer, indoor (median 4.4 µg/m(3), IQR = 2.4-8.6 µg/m(3)) and outdoor (median 4.3 µg/m(3), IQR = 2.6-7.4 µg/m(3)) levels were similar. Positive matrix factorization (PMF) was applied to identify and apportion indoor and outdoor sources of elements in PM1 mass. Nine sources contributing to both indoor and outdoor PM1 concentrations were identified including secondary sulfate, soil, biomass smoke and environmental tobacco smoke (ETS), traffic, settled and mixed dust, coal combustion, road salt/road dust, and urban mixture. Three additional indoor sources were identified i.e., carpet dust, copper-rich, and silver-rich. Secondary sulfate, soil, biomass smoke and ETS contributed more than 70% (indoors: 0.29 µg/m(3), outdoors: 0.39 µg/m(3)) of measured elemental mass in PM1. These findings can aid understanding of relationships between submicron particles and health outcomes for indoor/outdoor sources.


Subject(s)
Air Pollution, Indoor/analysis , Particulate Matter/analysis , Alberta , Dust , Humans , Motor Vehicles , Seasons , Sulfates/analysis , Tobacco Smoke Pollution/analysis
19.
Environ Sci Technol ; 49(1): 597-605, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25469563

ABSTRACT

Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.


Subject(s)
Cities , Environmental Exposure/analysis , Environmental Monitoring , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis , Air Pollution/analysis , Canada , Geography , Humans , Multivariate Analysis , Particle Size
20.
Rev Environ Contam Toxicol ; 234: 135-203, 2015.
Article in English | MEDLINE | ID: mdl-25385514

ABSTRACT

In this review, we critically evaluated the epidemiological and toxicological evidence for the role of specific transition metals (As. Cr. Cu. Fe. Mn. Ni. Sc. Ti. V and Zn) in causing or contributing to the respiratory and cardiovascular health effects associated with ambient PM. Although the epidemiologic studies arc suggestive. and both the in vivo and in vitro laboratory studies document the toxicity of specific metals (Fe. Ni. V and Zn). the overall weight of evidence does not convincingly implicate metals as major contributors to health effects. None of the epidemiology studies that we reviewed conclusively implicated specific transition metals as having caused the respiratory and cardiovascular effects associated with ambient levels of PM. However, the studies reviewed tended to be internal ly consistent in identifying some metals (Fe, Ni, V and Zn) more frequently than others (As, Cu, Mn and Sc) as having positive associations wi th health effects. The major problem wi th which the epidemiological studies were faced was classifying and quantifying exposure. Community and population exposures to metals or other components of ambient PM were inferred from centrally- located samplers that may not accurately represent individual level exposures. Only a few authors reported findings that did not support the stated premise of the study; indeed, statistic ally significant associations are not necessarily biologically significant. It is likely that ·'negative studies" are under-represented in the published literature, making it a challenge to achieve a balanced evaluation of the role of metals in causing health effects associated with ambient PM. Both the in vivo and in vitro study results demonstrated that individual metals (Cu. Fe. Ni. V and Zn) and extracts of metals from ambient PM sources can produce acute inflammatory responses. However. the doses administered to laboratory animals were many orders of magnitude greater than what humans experience from breathing ambient air. The studies that used intratracheal instillation have the advantage of delivering a known dose to a specific anatomical location. but arc not analogous to an inhaled dose that is distributed over the surface area of the respiratory tract. Studies. in which laboratory animals or human volunteers inhaled CAPs best represent exposures to the general human population. The in vivo and in vitro studies reviewed provide indications that the probable mechanisms involved in the respiratory and cardiac effects from high metal exposures include: an inflammatory response mediated by formation of ROS, upregulation of genes coding for inflammatory cytokines, altered expression of genes involved in cell signaling pathways and maintenance of metals homeostasis.The fact that doses of metals many orders of magnitude greater than those existing in ambient air were required to produce measurable adverse effects in animals makes it doubtful that metals play any major role in respiratory and cardiovascular effects produced from human exposure to ambient PM. We suggest that future research priorities should focus on testing at more environmentally relevant exposure levels and that any new toxicological studies be written to include dosages in units that can be easily compared to human exposure levels.


Subject(s)
Cardiovascular System/drug effects , Metals/toxicity , Particulate Matter/toxicity , Respiration/drug effects , Environmental Exposure , Humans , Metals/analysis , Particulate Matter/analysis , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...