Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6633): 712-717, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36795827

ABSTRACT

Plate motion on shallow subduction megathrusts is accommodated by a spectrum of tectonic slip modes. However, the frictional properties and conditions that sustain these diverse slip behaviors remain enigmatic. Frictional healing is one such property, which describes the degree of fault restrengthening between earthquakes. We show that the frictional healing rate of materials entrained along the megathrust at the northern Hikurangi margin, which hosts well-characterized recurring shallow slow slip events (SSEs), is nearly zero (<0.0001 per decade). These low healing rates provide a mechanism for the low stress drops (<50 kilopascals) and short recurrence times (1 to 2 years) characteristic of shallow SSEs at Hikurangi and other subduction margins. We suggest that near-zero frictional healing rates, associated with weak phyllosilicates that are common in subduction zones, may promote frequent, small-stress-drop, slow ruptures near the trench.

2.
Sci Adv ; 6(13): eaay3314, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32232148

ABSTRACT

Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.

3.
Science ; 356(6343): 1157-1160, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28619941

ABSTRACT

The discovery of slow earthquakes has revolutionized the field of earthquake seismology. Defining the locations of these events and the conditions that favor their occurrence provides important insights into the slip behavior of tectonic faults. We report on a family of recurring slow-slip events (SSEs) on the plate interface immediately seaward of repeated historical moment magnitude (Mw) 8 earthquake rupture areas offshore of Japan. The SSEs continue for days to several weeks, include both spontaneous and triggered slip, recur every 8 to 15 months, and are accompanied by swarms of low-frequency tremors. We can explain the SSEs with 1 to 4 centimeters of slip along the megathrust, centered 25 to 35 kilometers (km) from the trench (4 to 10 km depth). The SSEs accommodate 30 to 55% of the plate motion, indicating frequent release of accumulated strain near the trench.


Subject(s)
Geological Phenomena , Earthquakes , Japan
4.
Science ; 352(6286): 701-4, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27151867

ABSTRACT

The range of fault slip behaviors near the trench at subduction plate boundaries is critical to know, as this is where the world's largest, most damaging tsunamis are generated. Our knowledge of these behaviors has remained largely incomplete, partially due to the challenging nature of crustal deformation measurements at offshore plate boundaries. Here we present detailed seafloor deformation observations made during an offshore slow-slip event (SSE) in September and October 2014, using a network of absolute pressure gauges deployed at the Hikurangi subduction margin offshore New Zealand. These data show the distribution of vertical seafloor deformation during the SSE and reveal direct evidence for SSEs occurring close to the trench (within 2 kilometers of the seafloor), where very low temperatures and pressures exist.

5.
Nat Commun ; 6: 7607, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26123872

ABSTRACT

Histories of vertical crustal motions at convergent margins offer fundamental insights into the relationship between interplate slip and permanent deformation. Moreover, past abrupt motions are proxies for potential tsunamigenic earthquakes and benefit hazard assessment. Well-dated records are required to understand the relationship between past earthquakes and Holocene vertical deformation. Here we measure elevations and (230)Th ages of in situ corals raised above the sea level in the western Solomon Islands to build an uplift event history overlying the seismogenic zone, extremely close to the trench (4-40 km). We find marked spatiotemporal heterogeneity in uplift from mid-Holocene to present: some areas accrue more permanent uplift than others. Thus, uplift imposed during the 1 April 2007 Mw 8.1 event may be retained in some locations but removed in others before the next megathrust rupture. This variability suggests significant changes in strain accumulation and the interplate thrust process from one event to the next.

SELECTION OF CITATIONS
SEARCH DETAIL
...