Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(41): 48382-48394, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37801731

ABSTRACT

A systematic effort has been described to grow ternary Ge1-x-ySixSny semiconductors on silicon with high Sn concentrations spanning the 9.5-21.2% range. The ultimate goal is not only to produce direct band gap materials well into the infrared region of the spectrum but also to approach a critical concentration (yc) for which further additions of Si would decrease─rather than increase─the band gap. This counterintuitive behavior is expected as a result of the giant bowing parameter in the compositional dependence of the band gap associated with the presence of Si-Sn pairs. The growth approach in this study was based on a chemical vacuum deposition method that uses Si4H10, Ge3H8, and SnD4 or SnH4 as the sources of Si, Ge, and Sn, respectively. A fixed Si concentration near x = 0.05-0.07 was chosen to focus the exploration of the compositional space. A first family of samples was grown of Ge-buffered Si substrates. For Sn concentrations y < 0.12, it was found that the samples relaxed their mismatch strain in situ during growth, resulting in high Sn content films that had relatively low levels of strain and exhibited photoluminescence signals that demonstrated direct band gap behavior for the first time. The device potential of these materials was also demonstrated by fabricating a prototype photodiode with low dark currents. The optical studies suggest that the above-mentioned critical concentration is close to yc = 0.2. As the growth temperature was lowered in an effort to reach such values, Sn concentrations as high as y = 0.15 were obtained, but the films grew fully strained with compressive levels as high as 1.7%. To increase the Sn concentration beyond y = 0.15, a new strategy was adopted, in which the Ge buffer layer was eliminated, and the ternary alloy was grown directly on Si. The much higher lattice mismatch between the Ge1-x-ySixSny layer and the Si substrate caused strain relaxation right at the film/substrate interface, and the subsequent films grew with much lower levels of strain. This made it possible to lower the growth temperatures even further and achieve a comprehensive series of strained relaxed samples with tunable Sn concentrations as high as y = 0.21 (and beyond). The latter represent the highest Sn contents in crystalline Ge1-x-ySixSny attained to date and reach the desired yc = 0.2 range. The synthesized films exhibited significant thickness, allowing a thorough determination of composition, crystallinity, morphology, and bonding properties, indicating the formation of single-phase single-crystal alloys with random cubic structures. Further work will focus on optimizing the latter samples to explore the optical and electronic properties.

2.
ACS Appl Mater Interfaces ; 10(43): 37198-37206, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30298720

ABSTRACT

We report a versatile chemical vapor deposition (CVD) method to dope Ge films with Ga atoms in situ over a wide concentration range spanning from 3 × 1018 to 2.7 × 1020 cm-3. The method introduces a stable and volatile Ga hydride [D2GaN(CH3)2]2 that reacts readily with Ge4H10 to deliver Ga dopants controllably and systematically at complementary metal-oxide-semiconductor compatible ultralow temperatures of ∼360 °C. Thick and monocrystalline layers (1.3 µm) are produced on Si substrates at growth rates approaching 50 nm/min. The doped crystals are fully epitaxial and devoid of misfit defects and Ga precipitates as evidenced by Rutherford backscattering spectrometry, X-ray diffraction, and cross-sectional transmission electron microscopy. The Ga contents measured by secondary ion mass spectrometry and the active carrier concentrations determined by spectroscopic ellipsometry (as well as Hall effect measurements in several cases) are in close agreement, indicating near full activation. Photoluminescence spectra show a strong emission peak at 0.79 eV corresponding to the direct gap E0 transition, evidence of the indirect transition, and additional structures characteristic of p-type Ge. Electroluminescence and I- V curves measured from p(Ga)-i-n photodiodes are found to be at par with those from boron-based reference devices. These results are promising and demonstrate that a single-source CVD approach allows independent control of Ga doping level and junction depth, producing flat dopant profiles, high activation ratios, uniform distributions, and sharp interfaces. This method potentially represents a viable alternative to state-of-the-art boron-based p-type doping and activation of Ge-like materials.

3.
ACS Appl Mater Interfaces ; 9(40): 35105-35113, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28901133

ABSTRACT

Epitaxial synthesis of Ga(As1-xPx)Ge3 alloys on Si(100) substrates is demonstrated using chemical vapor deposition reactions of [D2GaN(CH3)2]2 with P(GeH3)3 and As(GeH3)3 precursors. These compounds are chosen to promote the formation of GaAsGe3 and GaPGe3 building blocks which interlink to produce the desired crystalline product. Ge-rich (GaP)yGe5-2y analogues have also been grown with tunable Ge contents up to 90% by reactions of P(GeH3)3 with [D2GaN(CH3)2]2 under similar deposition protocols. In both cases, the crystal growth utilized Ge1-xSix buffer layers whose lattice constants were specifically tuned as a function of composition to allow perfect lattice matching with the target epilayers. This approach yielded single-phase materials with excellent crystallinity devoid of mismatch-induced dislocations. The lattice parameters of Ga(As1-xPx)Ge3 interpolated among the Ge, GaAs, and GaP end members, corroborating the Rutherford backscattering measurements of the P/As ratio. A small deviation from the Vegard's law that depends on the As/P ratio was observed and corroborated by ab initio calculations. Raman scattering shows evidence for the existence of Ga-As and Ga-P bonds in the Ge matrix. The As-rich samples exhibited photoluminescence with wavelengths similar to those observed for pure GaAsGe3, indicating that the emission profile does not change in any measurable manner by replacing As by P over a broad range up to x = 0.2. Furthermore, the photoluminescence (PL) data suggested a large negative bowing of the band gap as expected on account of a strong valence band localization on the As atoms. Spectroscopic ellipsometry measurements of the dielectric function revealed a distinct direct gap transition that closely matches the PL emission energy. These measurements also showed that the absorption coefficients can be systematically tuned as a function of composition, indicating possible applications of the new materials in optoelectronics, including photovoltaics.

SELECTION OF CITATIONS
SEARCH DETAIL
...