Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mech Ageing Dev ; 133(1): 37-45, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22212415

ABSTRACT

Dietary restriction (DR) is suggested to induce mitochondrial biogenesis, although recently this has been challenged. Here we determined the impact of 1, 9 and 18 months of 30% DR in male C57BL/6 mice on key mitochondrial factors and on mitochondrial function in skeletal muscle, relative to age-matched ad libitum (AL) controls. We examined proteins and mRNAs associated with mitochondrial biogenesis and measured mitochondrial respiration in permeabilised myofibres using high resolution respirometry. 30% DR, irrespective of duration, had no effect on citrate synthase activity. In contrast, total and nuclear protein levels of PGC-1α, mRNA levels of several mitochondrial associated proteins (Pgc-1α, Nrf1, Core 1, Cox IV, Atps) and cytochrome c oxidase content were increased in skeletal muscle of DR mice. Furthermore, a range of mitochondrial respiration rates were increased significantly by DR, with DR partially attenuating the age-related decline in respiration observed in AL controls. Therefore, DR did not increase mitochondrial content, as determined by citrate synthase, in mouse skeletal muscle. However, it did induce a PGC-1α adaptive response and increased mitochondrial respiration. Thus, we suggest that a functionally 'efficient' mitochondrial electron transport chain may be a critical mechanism underlying DR, rather than any net increase in mitochondrial content per se.


Subject(s)
Aging , Caloric Restriction , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption , Animals , Electron Transport , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...