Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35325190

ABSTRACT

Recombination is beneficial over the long term, allowing more effective selection. Despite long-term advantages of recombination, local recombination suppression can evolve and lead to genomic degeneration, in particular on sex chromosomes. Here, we investigated the tempo of degeneration in nonrecombining regions, that is, the function curve for the accumulation of deleterious mutations over time, leveraging on 22 independent events of recombination suppression identified on mating-type chromosomes of anther-smut fungi, including newly identified ones. Using previously available and newly generated high-quality genome assemblies of alternative mating types of 13 Microbotryum species, we estimated degeneration levels in terms of accumulation of nonoptimal codons and nonsynonymous substitutions in nonrecombining regions. We found a reduced frequency of optimal codons in the nonrecombining regions compared with autosomes, that was not due to less frequent GC-biased gene conversion or lower ancestral expression levels compared with recombining regions. The frequency of optimal codons rapidly decreased following recombination suppression and reached an asymptote after ca. 3 Ma. The strength of purifying selection remained virtually constant at dN/dS = 0.55, that is, at an intermediate level between purifying selection and neutral evolution. Accordingly, nonsynonymous differences between mating-type chromosomes increased linearly with stratum age, at a rate of 0.015 per My. We thus develop a method for disentangling effects of reduced selection efficacy from GC-biased gene conversion in the evolution of codon usage and we quantify the tempo of degeneration in nonrecombining regions, which is important for our knowledge on genomic evolution and on the maintenance of regions without recombination.


Subject(s)
Chromosomes, Fungal , Genes, Mating Type, Fungal , Codon/genetics , Evolution, Molecular , Recombination, Genetic , Sex Chromosomes
2.
J Fungi (Basel) ; 7(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673296

ABSTRACT

Mating-types allow single-celled eukaryotic organisms to distinguish self from non-self in preparation for sexual reproduction. The components of mating-type loci provide initial self/non-self-recognition through pheromone and receptor interactions that control early cell fusion events. However, they may also provide a second level of scrutiny that requires differences in alleles leading to production of a transcription factor required for successful downstream developmental pathways after initial cell fusion. Interestingly, the protein subunits of these transcription factors have not been thoroughly examined for their roles, if any, in the haploid cells themselves. In Ustilago maydis, the causative agent of galls in maize plants, the b locus, encoding bEast (bE) and bWest (bW), components of the eventual requisite transcription factor, has been extensively studied for its role in formation of the stable dikaryon after mating and subsequent pathogenic program. Little is known, however, about any roles for bE or bW in haploid cells. Since mating in fungi is often induced under conditions of nitrogen starvation, we have explored connections between the b locus and the nitrogen-sensing and response pathways in U. maydis. We previously identified a connection in haploid cells between the b locus and Ump2, the high-affinity transceptor, a protein that both transports ammonium and triggers filamentous growth as a response to nitrogen starvation. Deletion of the entire b locus abrogates the filamentous response to low ammonium, a phenotype that is rescued by overexpression of Ump2. Here we further investigated the individual roles of bE and bW in haploid cells. We show that bE and bW are expressed differentially in haploid cells starved for ammonium. Their respective deletion elicits different effects on transcription of mating and pathogenic-related genes and, importantly, on the degree of pathogenic development in host plants. This is the first demonstration of a role for these mating locus components on haploid development and the first to demonstrate a connection to the ammonium transceptors.

3.
Fungal Biol ; 122(7): 639-650, 2018 07.
Article in English | MEDLINE | ID: mdl-29880199

ABSTRACT

The dimorphic switch from budding to filamentous growth is an essential morphogenetic transition many fungi utilize to cause disease in the host. Although different environmental signals can induce filamentous growth, the developmental programs associated with transmitting these different signals may differ. Here, we explore the relationship between filamentation and expression levels of ammonium transporters (AMTs) that also sense low ammonium for Ustilago maydis, the pathogen of maize. Overexpression of the high affinity ammonium transporter, Ump2, under normally non-inducing conditions, results in filamentous growth. Furthermore, ump2 expression levels are correlated with expression of genes involved in the mating response pathway and in pathogenicity. Ump1 and Ump2 transcription levels also tracked expression of genes normally up-regulated during either filamentous growth or during growth of the fungus inside the host. Interestingly, haploid strains deleted for the b mating-type locus, like those deleted for ump2, failed to filament on low ammonium; they also shared some alterations in gene expression patterns with cells deleted for ump2 or over-expressing this gene. Deletion of ump2 either in both mating partners or in a solopathogenic haploid strain resulted in a dramatic reduction in disease severity for infected plants, suggesting some importance of this transceptor in the pathogenesis program.


Subject(s)
Ammonium Compounds/metabolism , Cation Transport Proteins/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genes, Mating Type, Fungal , Ustilago/genetics , Cation Transport Proteins/metabolism , Fungal Proteins/metabolism , Gene Deletion , Haploidy , Mutation , Transcription, Genetic , Ustilago/growth & development , Ustilago/metabolism , Ustilago/pathogenicity , Zea mays/microbiology
4.
Microbiology (Reading) ; 159(Pt 5): 857-868, 2013 May.
Article in English | MEDLINE | ID: mdl-23475947

ABSTRACT

Components of the cAMP (cyclic AMP) signalling cascades are conserved from fungi to humans, and are particularly important for fungal dimorphism and pathogenicity. Previous work has described two phosphodiesterases, UmPde1 and UmPde2, in Ustilago maydis which show strong phosphodiesterase activity. We further characterized the biological function(s) of these phosphodiesterases in U. maydis. Specifically, we examined their possible role(s) in regulation of the cAMP-dependent protein kinase A (PKA) pathway and their roles in filamentous growth and pathogenicity. We found that UmPde1, which shares 35 % similarity with Cryptococcus neoformans Pde1, also displays functional homology with this enzyme. UmPde1 complements the capsule-formation defect of C. neoformans strains deleted for Pde1. In U. maydis, the cell morphology of the umpde1 deletion mutant resembled the multiple budding phenotypes seen with the ubc1 mutant, which lacks the regulatory subunit of PKA. Interestingly, on low-ammonium medium, umpde2 deletion strains showed a reduction in filamentation that was comparable to that of ubc1 deletion strains; however, umpde1 deletion strains showed normal filamentation on low-ammonium medium. Furthermore, both the ubc1 deletion strain in which the PKA pathway was constitutively active and the umpde1 deletion strains were significantly reduced in pathogenicity, while the umpde2 deletion strains showed a trend for reduced pathogenicity compared with wild-type strains. These data support a role for the phosphodiesterases UmPde1 and UmPde2 in regulating the U. maydis cAMP-dependent PKA pathway through modulation of cAMP levels, thus affecting dimorphic growth and pathogenicity.


Subject(s)
Fungal Proteins/metabolism , Phosphoric Diester Hydrolases/metabolism , Plant Diseases/microbiology , Ustilago/enzymology , Ustilago/pathogenicity , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Phosphoric Diester Hydrolases/genetics , Ustilago/genetics , Ustilago/growth & development , Virulence , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...