Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(30): 17737-17746, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32647061

ABSTRACT

Selective packaging of the HIV-1 genome during virus assembly is mediated by interactions between the dimeric 5'-leader of the unspliced viral RNA and the nucleocapsid (NC) domains of a small number of assembling viral Gag polyproteins. Here, we show that the dimeric 5'-leader contains more than two dozen NC binding sites with affinities ranging from 40 nM to 1.4 µM, and that all high-affinity sites (Kd ≲ 400 nM) reside within a ∼150-nt region of the leader sufficient to promote RNA packaging (core encapsidation signal, ΨCES). The four initial binding sites with highest affinity reside near two symmetrically equivalent three-way junction structures. Unlike the other high-affinity sites, which bind NC with exothermic energetics, binding to these sites occurs endothermically due to concomitant unwinding of a weakly base-paired [UUUU]:[GGAG] helical element. Mutations that stabilize base pairing within this element eliminate NC binding to this site and severely impair RNA packaging into virus-like particles. NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix. Our findings suggest a sequential NC binding mechanism for Gag-genome assembly and identify a potential RNA Achilles' heel to which HIV therapeutics may be targeted.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Nucleocapsid/metabolism , RNA, Viral , Regulatory Sequences, Ribonucleic Acid , Virus Assembly , Base Sequence , Binding Sites , Genome, Viral , Nucleic Acid Conformation , Nucleocapsid Proteins/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...