Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Med ; 11(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743605

ABSTRACT

COVID-19 generates SARS-CoV-2-specific antibodies in immunocompetent individuals. However, in immunocompromised patients, the humoral immunity following infection may be impaired or absent. Recently, the assessment of cellular immunity to SARS-CoV-2, both following natural infection and vaccination, has contributed new knowledge regarding patients with low or no antibody responses. As part of a prospective cohort study which included hospitalized patients with COVID-19, we identified immunocompromised patients and compared them with age- and sex-matched immunocompetent patients regarding co-morbidities, biomarkers of COVID-19 and baseline viral load by real-time PCR in nasopharyngeal swabs. Spike and nucleocapsid antibody responses were analyzed at inclusion and after two weeks, six weeks and six months. Plasma immunoglobulin G (IgG) levels were quantified, lymphocyte phenotyping was performed, and SARS-CoV-2 specific CD4 and CD8 T cell responses after in vitro antigen stimulation were assessed at six months post infection. All patients showed IgG levels above or within reference limits. At six months, all patients had detectable SARS-CoV-2 anti-spike antibody levels. SARS-CoV-2 specific T cell responses were detected in 12 of 12 immunocompetent patients and in four of six immunocompromised patients. The magnitude of long-lived SARS-CoV-2 specific T cell responses were significantly correlated with the number of CD4 T cells and NK cells. Determining the durability of the humoral and cellular immune response against SARS-CoV-2 in immunocompromised individuals could be of importance by providing insights into the risk of re-infection and the need for vaccine boosters.

3.
Front Immunol ; 13: 1082912, 2022.
Article in English | MEDLINE | ID: mdl-36685582

ABSTRACT

Introduction: After more than two years the Coronavirus disease-19 (COVID-19) pandemic continues to burden healthcare systems and economies worldwide, and it is evident that the effects on the immune system can persist for months post-infection. The activity of myeloid cells such as monocytes and dendritic cells (DC) is essential for correct mobilization of the innate and adaptive responses to a pathogen. Impaired levels and responses of monocytes and DC to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is likely to be a driving force behind the immune dysregulation that characterizes severe COVID-19. Methods: Here, we followed a cohort of COVID-19 patients hospitalized during the early waves of the pandemic for 6-7 months. The levels and phenotypes of circulating monocyte and DC subsets were assessed to determine both the early and long-term effects of the SARS-CoV-2 infection. Results: We found increased monocyte levels that persisted for 6-7 months, mostly attributed to elevated levels of classical monocytes. Myeloid derived suppressor cells were also elevated over this period. While most DC subsets recovered from an initial decrease, we found elevated levels of cDC2/cDC3 at the 6-7 month timepoint. Analysis of functional markers on monocytes and DC revealed sustained reduction in program death ligand 1 (PD-L1) expression but increased CD86 expression across almost all cell types examined. Finally, C-reactive protein (CRP) correlated positively to the levels of intermediate monocytes and negatively to the recovery of DC subsets. Conclusion: By exploring the myeloid compartments, we show here that alterations in the immune landscape remain more than 6 months after severe COVID-19, which could be indicative of ongoing healing and/or persistence of viral antigens.


Subject(s)
COVID-19 , Monocytes , Humans , COVID-19/metabolism , SARS-CoV-2 , Dendritic Cells , Hospitalization
SELECTION OF CITATIONS
SEARCH DETAIL
...