Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 26(1): 71-84, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18845549

ABSTRACT

The Adhesion G-protein-coupled receptors (GPCRs) are the most complex gene family among GPCRs with large genomic size, multiple introns, and a fascinating flora of functional domains, though the evolutionary origin of this family has been obscure. Here we studied the evolution of all class B (7tm2)-related genes, including the Adhesion, Secretin, and Methuselah families of GPCRs with a focus on nine genomes. We found that the cnidarian genome of Nematostella vectensis has a remarkably rich set of Adhesion GPCRs with a broad repertoire of N-terminal domains although this genome did not have any Secretin GPCRs. Moreover, the single-celled and colony-forming eukaryotes Monosiga brevicollis and Dictyostelium discoideum contain Adhesion-like GPCRs although these genomes do not have any Secretin GPCRs suggesting that the Adhesion types of GPCRs are the most ancient among class B GPCRs. Phylogenetic analysis found Adhesion group V (that contains GPR133 and GPR144) to be the closest relative to the Secretin family in the Adhesion family. Moreover, Adhesion group V sequences in N. vectensis share the same splice site setup as the Secretin GPCRs. Additionally, one of the most conserved motifs in the entire Secretin family is only found in group V of the Adhesion family. We suggest therefore that the Secretin family of GPCRs could have descended from group V Adhesion GPCRs. We found a set of unique Adhesion-like GPCRs in N. vectensis that have long N-termini containing one Somatomedin B domain each, which is a domain configuration similar to that of a set of Adhesion-like GPCRs found in Branchiostoma floridae. These sequences show slight similarities to Methuselah sequences found in insects. The extended class B GPCRs have a very complex evolutionary history with several species-specific expansions, and we identified at least 31 unique N-terminal domains originating from other protein classes. The overall N-terminal domain structure, however, concurs with the phylogenetic analysis of the transmembrane domains, thus enabling us to track the origin of most of the subgroups.


Subject(s)
Evolution, Molecular , Receptors, G-Protein-Coupled/genetics , Secretin/genetics , Animals , Genome , Phylogeny , RNA Splice Sites
2.
BMC Neurosci ; 9: 97, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18834514

ABSTRACT

BACKGROUND: GPR125 belongs to the family of Adhesion G protein-coupled receptors (GPCRs). A single copy of GPR125 was found in many vertebrate genomes. We also identified a Drosophila sequence, DmCG15744, which shares a common ancestor with the entire Group III of Adhesion GPCRs, and also contains Ig, LRR and HBD domains which were observed in mammalian GPR125. RESULTS: We found specific expression of GPR125 in cells of the choroid plexus using in situ hybridization and protein-specific antibodies and combined in situ/immunohistochemistry co-localization using cytokeratin, a marker specific for epithelial cells. Induction of inflammation by LPS did not change GPR125 expression. However, GPR125 expression was transiently increased (almost 2-fold) at 4 h after traumatic brain injury (TBI) followed by a decrease (approximately 4-fold) from 2 days onwards in the choroid plexus as well as increased expression (2-fold) in the hippocampus that was delayed until 1 day after injury. CONCLUSION: These findings suggest that GPR125 plays a functional role in choroidal and hippocampal response to injury.


Subject(s)
Brain Injuries/physiopathology , Choroid Plexus/pathology , Membrane Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Base Sequence , Brain Injuries/chemically induced , Choroid Plexus/metabolism , Gene Expression Profiling , Hippocampus/metabolism , Hippocampus/pathology , Humans , Immunohistochemistry , In Situ Hybridization , Inflammation/chemically induced , Inflammation/physiopathology , Keratins/genetics , Keratins/metabolism , Lipopolysaccharides , Male , Membrane Glycoproteins , Membrane Proteins/metabolism , Mice , Platelet Glycoprotein GPIb-IX Complex , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Time Factors , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...