Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ground Water ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829279

ABSTRACT

Open pit mining frequently requires regional water tables to be lowered to access ore deposits. When mines close, dewatering ceases allowing the water table to recover. In arid and semi-arid mining regions, the developing pit lakes are predominantly fed by groundwater during this recovery phase and pit lakes develop first into "terminal sinks" for the surrounding groundwater system. With time, the re-establishment of regional hydraulic gradients can cause pit lakes to develop into throughflow systems, in which pit lake water outflows into adjacent aquifers. In this study, we use numerical groundwater modeling to aid process understanding of how regional hydraulic gradients, aquifer properties, net evaporation rates, and pit geometry determine the hydraulic evolution of groundwater-fed pit lakes. We find that before the recovery of the regional water table to its new equilibrium, pit lakes frequently transition to throughflow systems. Throughflow from pit lakes to downstream aquifers can develop within two decades following cessation of dewatering even under low hydraulic gradients (e.g., 5 × 10-4) or high net evaporation rates (e.g., 2.5 m/year). Pit lakes remain terminal sinks only under suitable combinations of high evaporation rates, low hydraulic gradients, and low hydraulic conductivities. In addition, we develop an approximate analytical solution for a rapid assessment of the hydraulic status of pit lakes under steady-state conditions. Understanding whether pit lakes remain terminal sinks or transition into throughflow systems largely determines the long-term water quality of pit lakes and downstream aquifers. This knowledge is fundamental for mine closure and planning post-mining land use.

2.
Ground Water ; 61(3): 305-317, 2023.
Article in English | MEDLINE | ID: mdl-36950867

ABSTRACT

Managed aquifer recharge (MAR) has been gaining adoption within the mining industry for managing surplus water volumes and reducing the groundwater impacts of dewatering. This paper reviews MAR for mining and includes an inventory of 27 mines using or considering MAR for current or future operations. Most mines using MAR are in arid or semi-arid regions and are implementing it through infiltration basins or bore injection to manage surplus water, preserve aquifers for environmental or human benefit, or adhere to licensing that requires zero surface discharge. Surplus water volumes, hydrogeological conditions, and economics play a pivotal role in the feasibility of MAR for mining. Groundwater mounding, well clogging, and interaction between adjacent mines are common challenges. Mitigation strategies include predictive groundwater modeling, extensive monitoring programs, rotation of infiltration or injection facilities, physical and chemical treatments for clogging, and careful location for MAR facilities in relation to adjacent operations. Should water availability alternate between shortage and excess, injection bores may be used for supply, thus reducing costs and risks associated with drilling new wells. MAR, if applied strategically, also has the potential to accelerate groundwater recovery post-mine closure. The success of MAR for mining is emphasized by mines opting to increase MAR capacity alongside dewatering expansions, as well as prospective mines proposing MAR for future water requirements. Upfront planning is the key to maximizing MAR benefits. Improved information sharing could help increase awareness and uptake of MAR as an effective and sustainable mine water management tool.


Subject(s)
Groundwater , Humans , Prospective Studies , Water Wells , Mining , Water
3.
Water Res ; 225: 119096, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36162294

ABSTRACT

Contamination through per-and poly-fluoroalkyl substances (PFAS) have occurred globally in soil and groundwater systems at military, airport and industrial sites due to the often decades-long periodic application of firefighting foams. At PFAS contaminated sites, the unsaturated soil horizon often serves as a long-term source for sustained PFAS contamination for both groundwater and surface water runoff. An understanding of the processes controlling future mass loading rates to the saturated zone from these source zones is imperative to design efficient remediation measures. In the present study, hydrochemical data from a site where PFAS transport was observed as a result of the decades-long application of AFFF were used to develop and evaluate conceptual and numerical models that determine PFAS mobility across the vadose zone under realistic field-scale conditions. The simulation results demonstrate that the climate-driven physical flow processes within the vadose zone exert a dominating control on the retention of PFAS. Prolonged periods of evapotranspiration exceeding rainfall under the semi-arid conditions trigger periods of upward flux and evapoconcentration, leading to the observed persistence of PFAS compounds in the upper ca. 2 metres of the vadose zone, despite cessation of AFFF application to soils since more than a decade. Physico-chemical retention mechanisms, namely sorption to the air-water interface (AWI) and sediment surfaces, contribute further to PFAS retention. The simulations demonstrate how PFAS downward transport is effectively confined to short periods following discrete rain events when soils display a high degree of saturation. During these periods, AWI sorption is at a minimum. In addition, high PFAS concentrations measured and simulated below the source zone reduce the effect of the AWI further due to a decrease in surface tension associated with elevated PFAS concentrations. Consequently, time-integrated PFAS migration and retardation illuminates that the field-relevant PFAS transport rates are predominantly controlled by the physical flow processes with a lower relative importance of AWI and sediment sorption adding to PFAS retention.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Soil/chemistry , Water
4.
Sci Total Environ ; 826: 154184, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35231527

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been identified as emerging contaminants of public health concern. With PFAS now detected globally in a wide range of environments, there is an urgent need for effective remedial treatment solutions at the field scale. Phytoremediation presents a potential remediation strategy for PFAS that would allow efficient and cost-effective remediation at large scales. This study examined the potential for the Australian native wetland plant Juncus sarophorus to tolerate, take up, and accumulate PFOS, PFOA and PFHxS. A 190-day glasshouse experiment was conducted, in which 0, 10 and 100 µg/L each of PFOS, PFOA and PFHxS were used to irrigate J. sarophorus in potted soil. The results suggest that J. sarophorus has a high tolerance to PFAS and is effective at accumulating and transferring PFHxS and PFOA from soils to above ground biomass. Together with its high growth rate, J. sarophorus appears to be, in principle, a suitable candidate for phytoextraction of short-chained PFAS compounds. It is, however, less efficient at uptake of PFOS, owing to the long chain-lengths of this compound and PFOSs' ability to sorb effectively to soils. The total accumulated PFAS mass at the end of the experiment was ~2000 µg/kg biota(wet weight) and ~170 µg/kg biota(wet weight) for soils irrigated with 100 µg/L and 10 µg/L for each PFAS compound, translating into overall PFAS removal rates of 11% and 9%.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Australia , Fluorocarbons/analysis , Soil , Water Pollutants, Chemical/analysis , Wetlands
5.
Ground Water ; 60(4): 477-487, 2022 07.
Article in English | MEDLINE | ID: mdl-35094394

ABSTRACT

Dewatering of open pit mines can lower the regional water table for distances of several kilometers from the pit. When the mine is closed, dewatering operations usually cease, and the water table near the pit begins to rise. If the pit is backfilled, the water table will eventually recover, but this recovery may take several hundred years. However, if the extracted water is re-injected into the subsurface, then this may accelerate recovery of the water table. We show that there is an optimal distance for re-injection, which is sufficiently far from the mine to minimize the amount of groundwater that flows back to the pit during mine operations (and hence necessitate additional pumping) but is still close enough to speed up the water table recovery post-mine closure. The optimal injection distance increases with the aquifer hydraulic diffusivity and the mine life (duration of dewatering and injection), and typically ranges between about two and nine times the radius of the mine pit. Where the mine pit is not backfilled, the relative reduction in drawdown due to injecting all the pumped water at the optimal distance is between approximately 10% and 50% after a recovery time equal to the mining period, increasing to 30% to 90% after a recovery time five times the mining period. The relative drawdown reduction due to managed aquifer recharge will be even greater for a pit which is backfilled when mining ceases.


Subject(s)
Groundwater , Mining , Water , Water Movements
6.
J Contam Hydrol ; 234: 103697, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32836105

ABSTRACT

Riverbank filtration is a commonly-used technology that improves water quality by passing river water through aquifers. In this study, a riverbank filtration site in Busan, South Korea, was investigated to understand the spatiotemporal evolution of high iron and sulfate concentrations observed in the riverbank-filtered water. Discrepancies between the nonreactive transport results and field measurements suggest that iron-sulfate-related geochemical reactions play a major role in the spatiotemporal evolution of the hydrochemical properties. Pyrite oxidation was hypothesized to be the main process driving the release of iron and sulfate. To test this hypothesis, a reactive transport model was developed, that implemented pyrite oxidation as a kinetic process and subsequent ferrous iron oxidation and ferric iron precipitation as equilibrium processes. The model accurately captured the temporal evolution of sulfate; however, iron concentrations were underestimated. Sensitivity tests revealed that adjusting reaction constants significantly improved the prediction of iron concentrations. The results of this study suggest that pyrite oxidation can affect the hydrochemistry of riverbank-filtered water and highlight the potential limitations of using theoretical reaction constants in field modeling applications.


Subject(s)
Groundwater , Water Pollutants, Chemical , Filtration , Republic of Korea , Sulfates/analysis , Water Pollutants, Chemical/analysis , Water Quality
7.
Sci Total Environ ; 648: 367-376, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30121036

ABSTRACT

Subsurface iron removal (SIR) is an in-situ technique to lower the iron content of extracted groundwater. Through cyclic injection of oxygenated water ferrous iron oxidises and precipitates as iron hydroxide in a zone surrounding the extraction well, enhancing the sorptive capacity of the aquifer. During subsequent pumping phases, groundwater traverses the oxidation zone and ferrous iron sorbs to available and newly formed exchange and sorption sites, thereby retarding the breakthrough of dissolved iron. The process is well-understood in regards to the retardation of iron. Less well understood, however, is the behavior of a number of trace metals and metalloids during SIR operations, foremost arsenic (As). In this study, we analyse major and minor ion and trace metal concentrations from a number of SIR tests in a sand aquifer near Leuven, Belgium. We use reactive transport modelling to evaluate conceptual models of trace metal release and arrest. The test data, underpinned by model results, show that metal release, namely arsenic and barium (Ba), occurs through the oxidation of trace amounts of sulphide minerals during the injection phase. Sorption through cation exchange retards Ba while complexation lowers dissolved As concentrations. Arsenic is mobilized again during the pumping phase through varying phosphate concentrations in the native groundwater, despite available sorption surfaces, while Ba remains adsorbed. Concentrations, however, remain below WHO guideline values for As and Ba (10 µg/l and 0.7 mg/l), respectively. The developed conceptual model of As fate reveals a high propensity for As mobility during SIR due to desorption reactions and delivers an explanation as to why many SIR operations fail to show substantial As removal, despite efficient iron removal. Other monitored trace elements showed no mobilisation, including Zn, Al, Cd, Cr, Cu, F, Hg, Ni, Pb, Sb and Se.

8.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Article in English | MEDLINE | ID: mdl-30107498

ABSTRACT

Groundwater is increasingly used globally for domestic, industrial and agricultural production. While many studies have focused on groundwater as a resource, the diverse ecosystems within are often ignored. Here, we assess 54 Southern South Australian groundwater microbial communities from the populated part of the state to assess their status and dynamics in isolated groundwater systems. We observed a strong site-to-site individuality in groundwater bacterial communities, likely due to the isolated nature of groundwater bodies leading to unique ecosystems. Rank abundance analysis indicates bacterial diversity is maintained even at low abundances and that the distribution fits classical ecological models for strong competition in resource-limited environments. Combined, our data indicates that despite overrepresentation of pollutant-associated bacterial orders in and around the Adelaide metropolitan area, microbial communities remain diverse and show little evidence of converging on a common pollutant-effected community.


Subject(s)
Groundwater/microbiology , Water Microbiology , Biodiversity , Ecosystem , Groundwater/chemistry , South Australia , Water Pollutants/analysis
9.
Sci Total Environ ; 631-632: 723-732, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29727987

ABSTRACT

Groundwater monitoring relies on the acquisition of 'representative' groundwater samples, which should reflect the ambient water quality at a given location. However, drilling of a monitoring well for sample acquisition has the potential to perturb groundwater conditions to a point that may prove to be detrimental to the monitoring objective. Following installation of 20 monitoring wells in close geographic proximity in central Florida, opposing concentration trends for As and Mo were observed. In the first year after well installation As and Mo concentrations increased in some wells by a factor of 2, while in others As and Mo concentrations decreased by a factor of up to 100. Given this relatively short period of time, a natural change in groundwater composition of such magnitude is not expected, leaving well installation itself as the likely cause for the observed concentration changes. Hence, initial concentrations were identified as 'false negatives' if concentrations increased with time or as 'false positives' if concentrations decreased. False negatives were observed if concentrations were already high, i.e., the As or Mo were present at the time of drilling. False positives were observed if concentrations were relatively lower, i.e., As or Mo were present at low concentrations of approximately 1 to 2µg/L before drilling, but then released from the aquifer matrix as a result of drilling. Generally, As and Mo were present in the aquifer matrix in either pyrite or organic matter, both of which are susceptible to dissolution if redox conditions change due to the addition of oxygen. Thus, introduction of an oxidant into an anoxic aquifer through use of an oxygen saturated drilling fluid served as the conceptual model for the trends where concentrations decreased with time. Mixing between drilling fluid and groundwater (i.e., dilution) was used as the conceptual model for scenarios where increasing trends were observed. Conceptual models were successfully tested through formulation and application of data-driven reactive transport models, using the USGS code MODFLOW in conjunction with the reactive multicomponent transport code PHT3D.

10.
Ground Water ; 51(3): 398-413, 2013.
Article in English | MEDLINE | ID: mdl-22900478

ABSTRACT

Radially symmetric flow and solute transport around point sources and sinks is an important specialized topic of groundwater hydraulics. Analysis of radial flow fields is routinely used to determine heads and flows in the vicinity of point sources or sinks. Increasingly, studies also consider solute transport, biogeochemical processes, and thermal changes that occur in the vicinity of point sources/sinks. Commonly, the analysis of hydraulic processes involves numerical or (semi-) analytical modeling methods. For the description of solute transport, analytical solutions are only available for the most basic transport phenomena. Solving advanced transport problems numerically is often associated with a significant computational burden. However, where axis-symmetry applies, computational cost can be decreased substantially in comparison with full three-dimensional (3D) solutions. In this study, we explore several techniques of simulating conservative and reactive transport within radial flow fields using MODFLOW as the flow simulator, based on its widespread use and ability to be coupled with multiple solute and reactive transport codes of different complexity. The selected transport simulators are MT3DMS and PHT3D. Computational efficiency and accuracy of the approaches are evaluated through comparisons with full 2D/3D model simulations, analytical solutions, and benchmark problems. We demonstrate that radial transport models are capable of accurately reproducing a wide variety of conservative and reactive transport problems provided that an adequate spatial discretization and advection scheme is selected. For the investigated test problems, the computational load was substantially reduced, with the improvement varying, depending on the complexity of the considered reaction network.


Subject(s)
Groundwater/chemistry , Models, Theoretical , Water Movements , Computer Simulation , Groundwater/analysis
11.
Environ Sci Technol ; 45(16): 6924-31, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21718078

ABSTRACT

Aquifer storage and recovery (ASR) is an aquifer recharge technique in which water is injected in an aquifer during periods of surplus and withdrawn from the same well during periods of deficit. It is a critical component of the long-term water supply plan in various regions, including Florida, USA. Here, the viability of ASR as a safe and cost-effective water resource is currently being tested at a number of sites due to elevated arsenic concentrations detected during groundwater recovery. In this study, we developed a process-based reactive transport model of the coupled physical and geochemical mechanisms controlling the fate of arsenic during ASR. We analyzed multicycle hydrochemical data from a well-documented affected southwest Floridan site and evaluated a conceptual/numerical model in which (i) arsenic is initially released during pyrite oxidation triggered by the injection of oxygenated water (ii) then largely complexes to neo-formed hydrous ferric oxides before (iii) being remobilized during recovery as a result of both dissolution of hydrous ferric oxides and displacement from sorption sites by competing anions.


Subject(s)
Arsenic/analysis , Drinking Water/chemistry , Models, Chemical , Motion , Water Pollutants, Chemical/isolation & purification , Water Purification , Water Supply/analysis , Calibration , Computer Simulation , Hydrogen-Ion Concentration , Oxidation-Reduction , Oxygen/analysis , Time Factors , Uncertainty , Water Movements
12.
Environ Sci Technol ; 44(13): 5035-41, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20518522

ABSTRACT

Managed Aquifer Recharge (MAR) is promoted as an attractive technique to meet growing water demands. An impediment to MAR applications, where oxygenated water is recharged into anoxic aquifers, is the potential mobilization of trace metals (e.g., arsenic). While conceptual models for arsenic transport under such circumstances exist, they are generally not rigorously evaluated through numerical modeling, especially at field-scale. In this work, geochemical data from an injection experiment in The Netherlands, where the introduction of oxygenated water into an anoxic aquifer mobilized arsenic, was used to develop and evaluate conceptual and numerical models of arsenic release and attenuation under field-scale conditions. Initially, a groundwater flow and nonreactive transport model was developed. Subsequent reactive transport simulations focused on the description of the temporal and spatial evolution of the redox zonation. The calibrated model was then used to study and quantify the transport of arsenic. In the model that best reproduced field observations, the fate of arsenic was simulated by (i) release via codissolution of arsenopyrite, stoichiometrically linked to pyrite oxidation, (ii) kinetically controlled oxidation of dissolved As(III) to As(V), and (iii) As adsorption via surface complexation on neo-precipitated iron oxides.


Subject(s)
Arsenic/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Calibration , Ferric Compounds/chemistry , Organic Chemicals/analysis , Oxidation-Reduction , Oxygen/chemistry , Water/chemistry , Water Movements , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...