Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
JCO Precis Oncol ; 8: e2300453, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412388

ABSTRACT

PURPOSE: Establishing accurate age-related penetrance figures for the broad range of cancer types that occur in individuals harboring a pathogenic germline variant in the TP53 gene is essential to determine the most effective clinical management strategies. These figures also permit optimal use of cosegregation data for classification of TP53 variants of unknown significance. Penetrance estimation can easily be affected by bias from ascertainment criteria, an issue not commonly addressed by previous studies. MATERIALS AND METHODS: We performed a maximum likelihood penetrance estimation using full pedigree data from a multicenter study of 146 TP53-positive families, incorporating adjustment for the effect of ascertainment and population-specific background cancer risks. The analysis included pedigrees from Australia, Spain, and United States, with phenotypic information for 4,028 individuals. RESULTS: Core Li-Fraumeni syndrome (LFS) cancers (breast cancer, adrenocortical carcinoma, brain cancer, osteosarcoma, and soft tissue sarcoma) had the highest hazard ratios of all cancers analyzed in this study. The analysis also detected a significantly increased lifetime risk for a range of cancers not previously formally associated with TP53 pathogenic variant status, including colorectal, gastric, lung, pancreatic, and ovarian cancers. The cumulative risk of any cancer type by age 50 years was 92.4% (95% CI, 82.2 to 98.3) for females and 59.7% (95% CI, 39.9 to 81.3) for males. Females had a 63.3% (95% CI, 35.6 to 90.1) cumulative risk of developing breast cancer by age 50 years. CONCLUSION: The results from maximum likelihood analysis confirm the known high lifetime risk for the core LFS-associated cancer types providing new risk estimates and indicate significantly increased lifetime risks for several additional cancer types. Accurate cancer risk estimates will help refine clinical recommendations for TP53 pathogenic variant carriers and improve TP53 variant classification.


Subject(s)
Breast Neoplasms , Li-Fraumeni Syndrome , Male , Female , Humans , United States , Middle Aged , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Genes, p53/genetics , Pedigree , Tumor Suppressor Protein p53/genetics , Genetic Predisposition to Disease/genetics , Breast Neoplasms/genetics , Risk Factors
3.
Genome Med ; 15(1): 74, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37723522

ABSTRACT

BACKGROUND: Many families and individuals do not meet criteria for a known hereditary cancer syndrome but display unusual clusters of cancers. These families may carry pathogenic variants in cancer predisposition genes and be at higher risk for developing cancer. METHODS: This multi-centre prospective study recruited 195 cancer-affected participants suspected to have a hereditary cancer syndrome for whom previous clinical targeted genetic testing was either not informative or not available. To identify pathogenic disease-causing variants explaining participant presentation, germline whole-genome sequencing (WGS) and a comprehensive cancer virtual gene panel analysis were undertaken. RESULTS: Pathogenic variants consistent with the presenting cancer(s) were identified in 5.1% (10/195) of participants and pathogenic variants considered secondary findings with potential risk management implications were identified in another 9.7% (19/195) of participants. Health economic analysis estimated the marginal cost per case with an actionable variant was significantly lower for upfront WGS with virtual panel ($8744AUD) compared to standard testing followed by WGS ($24,894AUD). Financial analysis suggests that national adoption of diagnostic WGS testing would require a ninefold increase in government annual expenditure compared to conventional testing. CONCLUSIONS: These findings make a case for replacing conventional testing with WGS to deliver clinically important benefits for cancer patients and families. The uptake of such an approach will depend on the perspectives of different payers on affordability.


Subject(s)
Neoplastic Syndromes, Hereditary , Humans , Prospective Studies , Oncogenes , Genetic Testing , Germ Cells
5.
Nat Med ; 29(7): 1681-1691, 2023 07.
Article in English | MEDLINE | ID: mdl-37291213

ABSTRACT

Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.


Subject(s)
Critical Illness , Rare Diseases , Infant , Child , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Multiomics , Whole Genome Sequencing/methods , Exome Sequencing
6.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834994

ABSTRACT

We have previously reported that pathogenic variants in a key metabolite repair enzyme NAXD cause a lethal neurodegenerative condition triggered by episodes of fever in young children. However, the clinical and genetic spectrum of NAXD deficiency is broadening as our understanding of the disease expands and as more cases are identified. Here, we report the oldest known individual succumbing to NAXD-related neurometabolic crisis, at 32 years of age. The clinical deterioration and demise of this individual were likely triggered by mild head trauma. This patient had a novel homozygous NAXD variant [NM_001242882.1:c.441+3A>G:p.?] that induces the mis-splicing of the majority of NAXD transcripts, leaving only trace levels of canonically spliced NAXD mRNA, and protein levels below the detection threshold by proteomic analysis. Accumulation of damaged NADH, the substrate of NAXD, could be detected in the fibroblasts of the patient. In agreement with prior anecdotal reports in paediatric patients, niacin-based treatment also partly alleviated some clinical symptoms in this adult patient. The present study extends our understanding of NAXD deficiency by uncovering shared mitochondrial proteomic signatures between the adult and our previously reported paediatric NAXD cases, with reduced levels of respiratory complexes I and IV as well as the mitoribosome, and the upregulation of mitochondrial apoptotic pathways. Importantly, we highlight that head trauma in adults, in addition to paediatric fever or illness, may precipitate neurometabolic crises associated with pathogenic NAXD variants.


Subject(s)
Brain Concussion , Brain Diseases, Metabolic , Hydro-Lyases , Adult , Child , Child, Preschool , Humans , Hydro-Lyases/metabolism , Mitochondria/metabolism , NAD/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Proteomics , Brain Concussion/complications , Brain Concussion/genetics , Brain Diseases, Metabolic/etiology , Brain Diseases, Metabolic/genetics
8.
Am J Hum Genet ; 110(1): 105-119, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36493768

ABSTRACT

Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.


Subject(s)
Cerebellar Ataxia , Fibroblast Growth Factors , Friedreich Ataxia , Trinucleotide Repeat Expansion , Adult , Humans , Ataxia/genetics , Australia , Cerebellar Ataxia/genetics , Friedreich Ataxia/genetics , Trinucleotide Repeat Expansion/genetics
9.
Mol Psychiatry ; 28(4): 1647-1663, 2023 04.
Article in English | MEDLINE | ID: mdl-36117209

ABSTRACT

Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.


Subject(s)
Apraxias , Speech Disorders , Child , Humans , Speech Disorders/genetics , Apraxias/genetics , Chromosome Mapping , Causality , Brain , Histone-Lysine N-Methyltransferase
10.
J Pers Med ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36579509

ABSTRACT

Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie's Mission­the Australian Reproductive Genetic Carrier Screening Project. Mackenzie's Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program.

11.
Hum Mutat ; 43(12): 1956-1969, 2022 12.
Article in English | MEDLINE | ID: mdl-36030538

ABSTRACT

Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.


Subject(s)
Tuberous Sclerosis , Humans , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tumor Suppressor Proteins/genetics , Mosaicism , Mutation
12.
Ann Neurol ; 92(1): 122-137, 2022 07.
Article in English | MEDLINE | ID: mdl-35411967

ABSTRACT

OBJECTIVE: Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS: Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. RESULTS: The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION: This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022;92:122-137.


Subject(s)
Cerebellar Ataxia , Interferon Type I , Spinocerebellar Ataxias , Ataxia , Australia , Exoribonucleases , France , Humans , Interferon Type I/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
14.
Pract Neurol ; 21(5): 424-426, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34112663

ABSTRACT

A 20-year-old man presented with recurrent subdural haemorrhages on a background of progressive sensorineural hearing loss, juvenile idiopathic arthritis and intracranial hypertension of unknown cause. His mother had a similar previous history. They both had a persistently mildly elevated serum C reactive protein. Repeat lumbar punctures identified persistently elevated intracranial pressure and mild pleocytosis. A dural biopsy showed necrotising pachymeningitis with granulomatous vasculitis. The underlying cause in both patients was a cryopyrin-associated periodic syndrome. We discuss its varied phenotype and how clinicians need to be aware of this treatable genetic condition to facilitate early treatment and to prevent accumulation of disability.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Hearing Loss, Sensorineural , Intracranial Hypertension , Cryopyrin-Associated Periodic Syndromes/complications , Cryopyrin-Associated Periodic Syndromes/drug therapy , Cryopyrin-Associated Periodic Syndromes/genetics , Hearing Loss, Sensorineural/genetics , Humans , Male , Phenotype , Young Adult
15.
J Paediatr Child Health ; 57(4): 477-483, 2021 04.
Article in English | MEDLINE | ID: mdl-33566436

ABSTRACT

Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing.


Subject(s)
Intellectual Disability , Pediatrics , Aged , Australia , Child , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Genetic Testing , Genomics , Humans , Intellectual Disability/genetics , National Health Programs
16.
Am J Med Genet A ; 185(1): 150-156, 2021 01.
Article in English | MEDLINE | ID: mdl-33107170

ABSTRACT

Lymphedema distichiasis syndrome (LDS) is a rare autosomal dominant condition characterized by lower limb lymphedema, distichiasis, and variable additional features. LDS is usually caused by heterozygous sequence variants in the FOXC2 gene located at 16q24, but in one previous instance LDS has resulted from a balanced reciprocal translocation with a breakpoint at 16q24, 120 kb distal to the FOXC2 gene suggesting a position effect. Here, we describe a second family with LDS caused by a translocation involving 16q24. The family were ascertained after detection of a paternally inherited balanced reciprocal translocation t(16;22)(q24;q13.1) in a pregnancy complicated by severe fetal hydrops. There was a past history of multiple miscarriages in the father's family, and a personal and family history of lymphedema and distichiasis, consistent with the diagnosis of LDS. Using whole genome amplified DNA from single sperm of the male proband, bead array analysis demonstrated that the FOXC2 gene was intact and the chromosome 16 breakpoint mapped to the same region 120Kb distal to the FOXC2 gene. This case highlights the clinical consequences that can arise from a translocation of genomic material without dosage imbalance, and that it is increasingly feasible to predict and characterize possible effects with improved access to molecular techniques.


Subject(s)
Eyelashes/abnormalities , Forkhead Transcription Factors/genetics , Genetic Predisposition to Disease , Hydrops Fetalis/genetics , Lymphedema/genetics , Enhancer Elements, Genetic/genetics , Eyelashes/pathology , Female , Heterozygote , Humans , Hydrops Fetalis/pathology , Lower Extremity/pathology , Lymphedema/pathology , Male , Pedigree , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics
17.
Genet Med ; 23(1): 183-191, 2021 01.
Article in English | MEDLINE | ID: mdl-32939031

ABSTRACT

PURPOSE: To determine the diagnostic yield and clinical impact of exome sequencing (ES) in patients with suspected monogenic kidney disease. METHODS: We performed clinically accredited singleton ES in a prospectively ascertained cohort of 204 patients assessed in multidisciplinary renal genetics clinics at four tertiary hospitals in Melbourne, Australia. RESULTS: ES identified a molecular diagnosis in 80 (39%) patients, encompassing 35 distinct genetic disorders. Younger age at presentation was independently associated with an ES diagnosis (p < 0.001). Of those diagnosed, 31/80 (39%) had a change in their clinical diagnosis. ES diagnosis was considered to have contributed to management in 47/80 (59%), including negating the need for diagnostic renal biopsy in 10/80 (13%), changing surveillance in 35/80 (44%), and changing the treatment plan in 16/80 (20%). In cases with no change to management in the proband, the ES result had implications for the management of family members in 26/33 (79%). Cascade testing was subsequently offered to 40/80 families (50%). CONCLUSION: In this pragmatic pediatric and adult cohort with suspected monogenic kidney disease, ES had high diagnostic and clinical utility. Our findings, including predictors of positive diagnosis, can be used to guide clinical practice and health service design.


Subject(s)
Exome , Kidney Diseases , Adult , Australia , Child , Genetic Testing , Humans , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Exome Sequencing
18.
J Neurol Sci ; 420: 117260, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33310205

ABSTRACT

Currently there is no secured ongoing funding in Australia for next generation sequencing (NGS) such as exome sequencing (ES) for adult neurological disorders. Studies have focused on paediatric populations in research or highly specialised settings, utilised standard NGS pipelines focusing only on small insertions, deletions and single nucleotide variants, and not explored impacts on management in detail. This prospective multi-site study performed ES and an extended bioinformatics repeat expansion analysis pipeline, on patients with broad phenotypes (ataxia, dementia, dystonia, spastic paraparesis, motor neuron disease, Parkinson's disease and complex/not-otherwise-specified), with symptom onset between 2 and 60 years. Genomic data analysis was phenotype-driven, using virtual gene panels, reported according to American College of Medical Genetics and Genomics guidelines. One-hundred-and-sixty patients (51% female) were included, median age 52 years (range 14-79) and median 9 years of symptoms. 34/160 (21%) patients received a genetic diagnosis. Highest diagnostic rates were in spastic paraparesis (10/25, 40%), complex/not-otherwise-specified (10/38, 26%) and ataxia (7/28, 25%) groups. Findings were considered 'possible/uncertain' in 21/160 patients. Repeat expansion detection identified an unexpected diagnosis of Huntington disease in an ataxic patient with negative ES. Impacts on management, such as more precise and tailored care, were seen in most diagnosed patients (23/34, 68%). ES and a novel bioinformatics analysis pipepline had a substantial diagnostic yield (21%) and management impacts for most diagnosed patients, in heterogeneous, complex, mainly adult-onset neurological disorders in real-world settings in Australia, providing evidence for NGS and complementary multiple, new technologies as valuable diagnostic tools.


Subject(s)
Exome , Genetic Testing , Adolescent , Adult , Aged , Australia , Child , Computational Biology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Phenotype , Prospective Studies , Young Adult
19.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33058759

ABSTRACT

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Subject(s)
Abnormalities, Multiple/genetics , Cognitive Dysfunction/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Fingers/abnormalities , Germ-Line Mutation , Heart Septal Defects/genetics , Polydactyly/genetics , Toes/abnormalities , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/pathology , Adolescent , Adult , Animals , Base Sequence , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/deficiency , Female , Fingers/pathology , Gene Expression Regulation, Developmental , Heart Septal Defects/diagnosis , Heart Septal Defects/pathology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Holoenzymes/chemistry , Holoenzymes/deficiency , Holoenzymes/genetics , Humans , Infant, Newborn , Male , Mice , Models, Molecular , Mosaicism , NIH 3T3 Cells , Pedigree , Polydactyly/diagnosis , Polydactyly/pathology , Protein Structure, Secondary , Toes/pathology
20.
Mov Disord ; 35(9): 1675-1679, 2020 09.
Article in English | MEDLINE | ID: mdl-32407596

ABSTRACT

BACKGROUND: Spinocerebellar ataxias are often caused by expansions of short tandem repeats. Recent methodological advances have made repeat expansion (RE) detection with whole-genome sequencing (WGS) feasible. OBJECTIVES: The objective of this study was to determine the genetic basis of ataxia in a multigenerational Australian pedigree with autosomal-dominant inheritance. METHODS AND RESULTS: WGS was performed on 3 affected relatives. The sequence data were screened for known pathogenic REs using 2 RE detection tools: exSTRa and ExpansionHunter. This screen provided a clear and rapid diagnosis (<5 days from receiving the sequencing data) of spinocerebellar ataxia 36, a rare form of ataxia caused by an intronic GGCCTG RE in NOP56. CONCLUSIONS: The diagnosis of rare ataxias caused by REs is highly feasible and cost-effective with WGS. We propose that WGS could potentially be implemented as the frontline, cost-effective methodology for the molecular testing of individuals with a clinical diagnosis of ataxia. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Spinocerebellar Ataxias , Ataxia , Australia , Humans , Microsatellite Repeats , Pedigree , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...