Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Thromb Haemost ; 22(5): 1433-1446, 2024 May.
Article in English | MEDLINE | ID: mdl-38331196

ABSTRACT

BACKGROUND: Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES: To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS: The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS: We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION: This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.


Subject(s)
Alloys , Antibodies, Monoclonal , Factor XII , Factor XI , Stents , Thrombosis , Animals , Thrombosis/prevention & control , Thrombosis/blood , Factor XII/metabolism , Factor XII/antagonists & inhibitors , Factor XII/immunology , Factor XI/antagonists & inhibitors , Factor XI/immunology , Factor XI/metabolism , Antibodies, Monoclonal/pharmacology , Humans , Blood Coagulation/drug effects , Disease Models, Animal , Male , Regional Blood Flow , Fibrinolytic Agents/pharmacology
2.
Res Pract Thromb Haemost ; 8(1): 102276, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38226339

ABSTRACT

Background: Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction. Coagulation factor (F) XI represents a promising therapeutic target to reduce thromboinflammation, as it is uniquely positioned at an intersection between inflammation and thrombin generation. Objectives: This study aimed to investigate the role of FXI in promoting platelet and endothelial cell activation in a model of hyperlipidemia. Methods: Nonhuman primates (NHPs) were fed a standard chow diet (lean, n = 6) or a high-fat diet (obese, n = 8) to establish a model of hyperlipidemia. Obese NHPs were intravenously administered a FXI blocking antibody (2 mg/kg) and studied at baseline and at 1, 7, 14, 21, and 28 days after drug administration. Platelet activation and inflammatory markers were measured using fluorescence-activated cell sorting or enzyme-linked immunosorbent assay. Molecular imaging was used to quantify vascular cell adhesion molecule 1 (VCAM-1) expression at the carotid bifurcation. Results: Obese NHPs demonstrated increased sensitivity for platelet P-selectin expression and phosphatidylserine exposure in response to platelet GPVI or PAR agonists compared with lean NHPs. Obese NHPs exhibited elevated levels of C-reactive protein, cathepsin D, and myeloperoxidase compared with lean NHPs. Following pharmacological inhibition of FIX activation by FXIa, platelet priming for activation by GPVI or PAR agonists, C-reactive protein levels, and endothelial VCAM-1 levels were reduced in obese NHPs. Conclusion: FXI activation promotes the proinflammatory phenotype of hyperlipidemia by priming platelet activation and inciting endothelial cell dysfunction.

3.
Blood ; 141(15): 1871-1883, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36706361

ABSTRACT

A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD. We found that when compared with healthy controls, patients with SCD exhibit increased circulating biomarkers of FXII activation that are associated with increased activation of the contact pathway. We also found that FXII, but not tissue factor, contributes to enhanced thrombin generation and systemic inflammation observed in sickle cell mice challenged with tumor necrosis factor α. In addition, FXII inhibition significantly reduced experimental venous thrombosis, congestion, and microvascular stasis in a mouse model of SCD. Moreover, inhibition of FXII attenuated brain damage and reduced neutrophil adhesion to the brain vasculature of sickle cell mice after ischemia/reperfusion induced by transient middle cerebral artery occlusion. Finally, we found higher FXII, urokinase plasminogen activator receptor, and αMß2 integrin expression in neutrophils of patients with SCD compared with healthy controls. Our data indicate that targeting FXII effectively reduces experimental thromboinflammation and vascular complications in a mouse model of SCD, suggesting that FXII inhibition may provide a safe approach for interference with inflammation, thrombotic complications, and vaso-occlusion in patients with SCD.


Subject(s)
Anemia, Sickle Cell , Factor XII , Animals , Mice , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/metabolism , Factor XII/metabolism , Inflammation , Stroke , Thrombosis/metabolism
4.
J Thromb Haemost ; 21(5): 1200-1213, 2023 05.
Article in English | MEDLINE | ID: mdl-36696212

ABSTRACT

BACKGROUND: Titanium (Ti) and its alloys are widely used in manufacturing medical devices because of their strength and resistance to corrosion. Although Ti compounds are considered compatible with blood, they appear to support plasma contact activation and may be thrombogenic. OBJECTIVES: The objective of this study was to compare Ti and titanium nitride (TiN) with known activators of contact activation (kaolin and silica) in plasma-clotting assays and to assess binding and activation of factor XII, (FXII), factor XI (FXI), prekallikrein, and high-molecular-weight kininogen (HK) with Ti/TiN. METHODS: Ti-based nanospheres and foils were compared with kaolin, silica, and aluminum in plasma-clotting assays. Binding and activation of FXII, prekallikrein, HK, and FXI to surfaces was assessed with western blots and chromogenic assays. RESULTS: Using equivalent surface amounts, Ti and TiN were comparable with kaolin and superior to silica, for inducing coagulation and FXII autoactivation. Similar to many inducers of contact activation, Ti and TiN are negatively charged; however, their effects on FXII are not neutralized by the polycation polybrene. Antibodies to FXII, prekallikrein, or FXI or coating Ti with poly-L-arginine blocked Ti-induced coagulation. An antibody to FXII reduced FXII and PK binding to Ti, kallikrein generation, and HK cleavage. CONCLUSION: Titanium compounds induce contact activation with a potency comparable with that of kaolin. Binding of FXII with Ti shares some features with FXII binding to soluble polyanions but may have unique features. Inhibitors targeting FXII or FXI may be useful in mitigating Ti-induced contact activation in patients with titanium-based implants that are exposed to blood.


Subject(s)
Kaolin , Prekallikrein , Humans , Factor XI/metabolism , Factor XII/metabolism , Prekallikrein/metabolism , Titanium
5.
Cell Mol Bioeng ; 15(3): 231-243, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35611166

ABSTRACT

Introduction: Inflammatory activation of the vascular endothelium leads to overexpression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), contributing to the pro-thrombotic state underpinning atherogenesis. While the role of TEC family kinases (TFKs) in mediating inflammatory cell and platelet activation is well defined, the role of TFKs in vascular endothelial activation remains unclear. We investigated the role of TFKs in endothelial cell activation in vitro and in a nonhuman primate model of diet-induced atherosclerosis in vivo. Methods and Results: In vitro, we found that ibrutinib blocked activation of the TFK member, BMX, by vascular endothelial growth factors (VEGF)-A in human aortic endothelial cells (HAECs). Blockade of BMX activation with ibrutinib or pharmacologically distinct BMX inhibitors eliminated the ability of VEGF-A to stimulate VCAM-1 expression in HAECs. We validated that treatment with ibrutinib inhibited TFK-mediated platelet activation and aggregation in both human and primate samples as measured using flow cytometry and light transmission aggregometry. We utilized contrast-enhanced ultrasound molecular imaging to measure platelet GPIbα and endothelial VCAM-1 expression in atherosclerosis-prone carotid arteries of obese nonhuman primates. We observed that the TFK inhibitor, ibrutinib, inhibited platelet deposition and endothelial cell activation in vivo. Conclusion: Herein we found that VEGF-A signals through BMX to induce VCAM-1 expression in endothelial cells, and that VCAM-1 expression is sensitive to ibrutinib in vitro and in atherosclerosis-prone carotid arteries in vivo. These findings suggest that TFKs may contribute to the pathogenesis of atherosclerosis and could represent a novel therapeutic target.

6.
Blood ; 138(22): 2173-2184, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34086880

ABSTRACT

End-stage renal disease (ESRD) patients on chronic hemodialysis have repeated blood exposure to artificial surfaces that can trigger clot formation within the hemodialysis circuit. Dialyzer clotting can lead to anemia despite erythropoietin and iron supplementation. Unfractionated heparin prevents clotting during hemodialysis, but it is not tolerated by all patients. Although heparin-free dialysis is performed, intradialytic blood entrapment can be problematic. To address this issue, we performed a randomized, double-blind, phase 2 study comparing AB023, a unique antibody that binds factor XI (FXI) and blocks its activation by activated FXII, but not by thrombin, to placebo in 24 patients with ESRD undergoing heparin-free hemodialysis. Patients were randomized to receive a single predialysis dose of AB023 (0.25 or 0.5 mg/kg) or placebo in a 2:1 ratio, and safety and preliminary efficacy were compared with placebo and observations made prior to dosing within each treatment arm. AB023 administration was not associated with impaired hemostasis or other drug-related adverse events. Occlusive events requiring hemodialysis circuit exchange were less frequent and levels of thrombin-antithrombin complexes and C-reactive protein were lower after AB023 administration compared with data collected prior to dosing. AB023 also reduced potassium and iron entrapment in the dialyzers, consistent with less blood accumulation within the dialyzers. We conclude that despite the small sample size, inhibition of contact activation-induced coagulation with AB023 was well tolerated and reduced clotting within the dialyzer. This trial was registered at www.clinicaltrials.gov as #NCT03612856.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antithrombins/therapeutic use , Kidney Failure, Chronic/therapy , Renal Dialysis/methods , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antithrombins/adverse effects , Double-Blind Method , Factor XI/antagonists & inhibitors , Female , Hemostasis/drug effects , Humans , Male , Middle Aged , Placebo Effect , Renal Dialysis/adverse effects , Thrombosis/etiology , Thrombosis/prevention & control
7.
Blood ; 138(2): 178-189, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33598692

ABSTRACT

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Subject(s)
Factor XII/metabolism , Multiple Organ Failure/metabolism , Multiple Organ Failure/microbiology , Staphylococcus aureus/physiology , Animals , Antibodies/therapeutic use , Blood Coagulation Disorders/complications , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/microbiology , Blood Platelets/metabolism , Cellular Microenvironment , Complement Activation , Factor XII/immunology , Female , Fibrinogen/metabolism , Hot Temperature , Inflammation/complications , Inflammation/pathology , Male , Multiple Organ Failure/immunology , Papio , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Survival Analysis
8.
Cell Mol Bioeng ; 13(3): 179-187, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32426056

ABSTRACT

INTRODUCTION: Tissue factor (TF) and factor (F) VII, components of the extrinsic pathway of blood coagulation, are essential for hemostatic plug formation in response to injury; less clear are their roles in propagating thrombosis, as observational data in humans with congenital FVII deficiency suggests persistent thrombotic and bleeding risk even at significantly decreased FVII levels. We aimed to define the contribution of FVII to thrombus formation and hemostasis using a non-human primate model. METHODS: We treated baboons with a FVII antisense oligonucleotide (ASO) and measured platelet and fibrin deposition inside and distal to collagen- or TF-coated vascular grafts. We assessed hemostasis by measuring bleeding time (BT) and prothrombin time (PT). Enoxaparin and vehicle treatments served as controls. RESULTS: FVII-ASO treatment reduced FVII levels by 95% and significantly increased both the PT and BT. Lowering FVII levels did not decrease platelet deposition in collagen- or TF-coated grafts, in thrombi distal to the grafts, or fibrin content of either collagen- and TF-coated grafts. Lowering FVII levels were associated with a modest 25% reduction in platelet deposition at 60 min in the distal thrombus tail of TF-coated grafts only. CONCLUSIONS: FVII inhibition by way of ASO is feasible yet significantly impairs hemostasis while only exhibiting antithrombotic effects when thrombosis is initiated by vessel wall surface-associated TF exposure.

9.
Res Pract Thromb Haemost ; 4(2): 205-216, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32110750

ABSTRACT

BACKGROUND: The contact factor XII (FXII) activates upon contact with a variety of charged surfaces. Activated FXII (FXIIa) activates factor XI, which activates factor IX, resulting in thrombin generation, platelet activation, and fibrin formation. In both in vitro and in vivo rabbit models, components of medical devices, including extracorporeal oxygenators, are known to incite fibrin formation in a FXII-dependent manner. Since FXII has no known role in hemostasis and its inhibition is therefore likely a safe antithrombotic approach, we investigated whether FXII inhibition also reduces accumulation of platelets in extracorporeal oxygenators. OBJECTIVES: We aimed to determine the effect of FXII inhibition on platelet deposition in perfused extracorporeal membrane oxygenators in nonhuman primates. METHODS: A potent FXII neutralizing monoclonal antibody, 5C12, was administered intravenously to block contact activation in baboons. Extracorporeal membrane oxygenators were temporarily deployed into chronic arteriovenous access shunts. Radiolabeled platelet deposition in oxygenators was quantified in real time using gamma camera imaging. Biochemical assays were performed to characterize the method of action of 5C12. RESULTS: The anti-FXII monoclonal antibody 5C12 recognized both the alpha and beta forms of human and baboon FXII by binding to the protease-containing domain, and inhibited FXIIa activity. Administration of 5C12 to baboons reduced platelet deposition and fibrin formation in the extracorporeal membrane oxygenators, in both the presence and absence of systemic low-dose unfractionated heparin. The antiplatelet dose of 5C12 did not cause measurable increases in template bleeding times in baboons. CONCLUSIONS: FXII represents a possible therapeutic and safe target for reducing platelet deposition and fibrin formation during medical interventions including extracorporeal membrane oxygenation.

10.
Blood ; 135(9): 689-699, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31977000

ABSTRACT

Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin's procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (<2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.


Subject(s)
Fibrinolytic Agents/pharmacology , Protein C/drug effects , Thrombin/analogs & derivatives , Thrombosis/prevention & control , Adult , Animals , Double-Blind Method , Humans , Middle Aged , Papio , Recombinant Proteins/pharmacology
11.
Arterioscler Thromb Vasc Biol ; 39(4): 799-809, 2019 04.
Article in English | MEDLINE | ID: mdl-30700130

ABSTRACT

Objective- Factor XI (FXI) contributes to thrombotic disease while playing a limited role in normal hemostasis. We generated a unique, humanized anti-FXI antibody, AB023, which blocks factor XIIa-mediated FXI activation without inhibiting FXI activation by thrombin or the procoagulant function of FXIa. We sought to confirm the antithrombotic activity of AB023 in a baboon thrombosis model and to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy adult subjects. Approach and Results- In a primate model of acute vascular graft thrombosis, AB023 reduced platelet and fibrin accumulation within the grafts by >75%. To evaluate the safety of AB023, we performed a first-in-human study in healthy adult volunteers without any serious adverse events. Overall, 10 of 21 (48%) subjects experienced 20 treatment-emergent adverse events, with 7 of 16 (44%) subjects following active treatment and 3 of 5 (60%) subjects following placebo. AB023 did not increase bleeding or prothrombin times. Anticoagulation was verified by a saturable ≈2-fold prolongation of the partial thromboplastin time for over 1 month after the highest dose. Conclusions- AB023, which inhibits contact activation-initiated blood coagulation in vitro and experimental thrombus formation in primates, produced a dose-dependent duration of limited anticoagulation without drug-related adverse effects in a phase 1 trial. When put in context with earlier observations suggesting that FXI contributes to venous thromboembolism and cardiovascular disease, although contributing minimally to hemostasis, our data further justify clinical evaluation of AB023 in conditions where contact-initiated FXI activation is suspected to have a pathogenic role. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT03097341.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Factor XI/antagonists & inhibitors , Factor XIa/physiology , Fibrinolytic Agents/therapeutic use , Adult , Animals , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Anticoagulants/adverse effects , Anticoagulants/immunology , Anticoagulants/pharmacology , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Factor XI/immunology , Factor XIIa/physiology , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/immunology , Fibrinolytic Agents/pharmacology , Graft Occlusion, Vascular/drug therapy , Humans , Papio , Partial Thromboplastin Time
12.
Am J Physiol Cell Physiol ; 310(5): C373-80, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26659727

ABSTRACT

The Tec family kinase Bruton's tyrosine kinase (Btk) plays an important signaling role downstream of immunoreceptor tyrosine-based activation motifs in hematopoietic cells. Mutations in Btk are involved in impaired B-cell maturation in X-linked agammaglobulinemia, and Btk has been investigated for its role in platelet activation via activation of the effector protein phospholipase Cγ2 downstream of the platelet membrane glycoprotein VI (GPVI). Because of its role in hematopoietic cell signaling, Btk has become a target in the treatment of chronic lymphocytic leukemia and mantle cell lymphoma; the covalent Btk inhibitor ibrutinib was recently approved by the US Food and Drug Administration for treatment of these conditions. Antihemostatic events have been reported in some patients taking ibrutinib, although the mechanism of these events remains unknown. We sought to determine the effects of Btk inhibition on platelet function in a series of in vitro studies of platelet activation, spreading, and aggregation. Our results show that irreversible inhibition of Btk with two ibrutinib analogs in vitro decreased human platelet activation, phosphorylation of Btk, P-selectin exposure, spreading on fibrinogen, and aggregation under shear flow conditions. Short-term studies of ibrutinib analogs administered in vivo also showed abrogation of platelet aggregation in vitro, but without measurable effects on plasma clotting times or on bleeding in vivo. Taken together, our results suggest that inhibition of Btk significantly decreased GPVI-mediated platelet activation, spreading, and aggregation in vitro; however, prolonged bleeding was not observed in a model of bleeding.


Subject(s)
Blood Platelets/drug effects , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Platelet Membrane Glycoproteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Administration, Oral , Agammaglobulinaemia Tyrosine Kinase , Animals , Blood Platelets/metabolism , Hemorrhage/chemically induced , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Papio , Platelet Activation/physiology , Signal Transduction/drug effects
13.
J Neurosci Methods ; 209(2): 337-43, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22771713

ABSTRACT

Accurate monitoring of respiration is often needed for neurophysiological studies, as either a dependent experimental variable or an indicator of physiological state. Current options for respiratory monitoring of animals held in a stereotaxic frame include EMG recordings, pneumotachograph measurements, inductance-plethysmography, whole-body plethysmography (WBP), and visual monitoring. While powerful, many of these methods prevent access to the animal's body, interfere with experimental manipulations, or require deep anesthesia and additional surgery. For experiments where these issues may be problematic, we developed a non-invasive method of recording respiratory parameters specifically for use with animals held in a stereotaxic frame. This system, ventilation pressure transduction (VPT), measures variations in pressure at the animal's nostril from inward and outward airflow during breathing. These pressure changes are detected by a sensitive pressure transducer, then filtered and amplified. The output is an analog signal representing each breath. VPT was validated against WBP using 10% carbon dioxide and systemic morphine (4mg/kg) challenges in lightly anesthetized animals. VPT accurately represented breathing rate and tidal volume changes under both baseline and challenge conditions. This novel technique can therefore be used to measure respiratory rate and relative tidal volume when stereotaxic procedures are needed for neuronal manipulations and recording.


Subject(s)
Monitoring, Physiologic , Respiration , Stereotaxic Techniques , Analysis of Variance , Animals , Male , Plethysmography , Rats , Rats, Sprague-Dawley , Respiratory Rate , Tidal Volume/physiology
14.
Respir Physiol Neurobiol ; 180(1): 52-60, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22027217

ABSTRACT

Respiratory depression is the main obstacle for the safe administration of morphine for acute pain after injury. Due to this complication, new delivery methods are needed to insure that safe and effective doses of opioid analgesics are administered during emergencies. A depot formulation containing a naloxone pro-drug was designed to release the antidote when morphine causes dangerous hypoxic conditions in the blood. The aim of this work was to test the naloxone release in vivo in response to a severe overdose of morphine in the Sprague-Dawley rat model. Non-invasive two-chamber plethysmography was used to monitor and record respiration and to test the capability of the naloxone pro-drug to respond to and rescue morphine-induced respiratory depression in the animal. We show that the pro-drug formulation can both prevent and reverse severe morphine induced respiratory depression. The animal model demonstrates that co-administration of the naloxone pro-drug reliably antagonizes profound respiratory depressive effects of morphine.


Subject(s)
Analgesics, Opioid/toxicity , Morphine/toxicity , Naloxone/pharmacokinetics , Narcotic Antagonists/pharmacokinetics , Prodrugs/pharmacokinetics , Respiratory Insufficiency/drug therapy , Animals , Chromatography, High Pressure Liquid , Male , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Plethysmography , Prodrugs/administration & dosage , Rats , Rats, Sprague-Dawley , Respiratory Insufficiency/chemically induced
15.
Neurotoxicol Teratol ; 32(3): 398-405, 2010.
Article in English | MEDLINE | ID: mdl-20043989

ABSTRACT

Our laboratory studies the effects of in utero opioid exposure on the neonate. In this work we test the effects of chronic in utero exposure to buprenorphine on the neonate. Buprenorphine is a promising candidate for treatment of opioid addiction during pregnancy and it has been suggested to decrease the neonatal abstinence syndrome in human infants. In our guinea pig model, we focused not only on the respiratory effects of in utero exposure on the neonate, but also studied withdrawal signs in the neonate, a major concern of all opioid treatment during pregnancy. Pregnant guinea pigs were treated with daily subcutaneous injections of 0.1mg/kg buprenorphine during the second half of gestation. We measured weight, locomotor activity and respiratory function in pups of ages 3 to 14 days. Respiratory response was recorded using a two-chamber plethysmograph, while pups were breathing either room air or 5% CO(2). Our results show that chronic in utero exposure to buprenorphine induces respiratory effects up to day 14 after birth, while earlier studies have shown that effects of either in utero methadone or morphine only persist in the first week after birth in the guinea pig model. These data provide important information for clinical trials of buprenorphine treatment suggesting that duration and severity of respiratory effects of in utero buprenorphine exposure should be monitored.


Subject(s)
Buprenorphine/toxicity , Narcotic Antagonists/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Respiration/drug effects , Animals , Animals, Newborn , Buprenorphine/administration & dosage , Carbon Dioxide/metabolism , Dose-Response Relationship, Drug , Female , Gestational Age , Guinea Pigs , Motor Activity/drug effects , Narcotic Antagonists/administration & dosage , Oxygen Consumption/drug effects , Plethysmography , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Respiratory Function Tests , Toxicity Tests
16.
Respir Physiol Neurobiol ; 169(3): 252-61, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19744579

ABSTRACT

Methadone is administered as a racemic mixture, although its analgesic and respiratory effects are attributed to R-isomer activity at the mu opioid receptor (MOP). Recently, we observed a four-fold increase in inspiratory time in 3-day-old guinea pigs following an injection of racemic methadone. We hypothesized that this effect was due to augmentation of R-methadone induced respiratory depression by the S-methadone isomer. In the current longitudinal study, we injected 3-, 7-, and 14-day-old neonatal guinea pigs with saline, R-methadone, S-methadone, or R- plus S-methadone in order to characterize the roles of the individual isomers, as well as the synergistic effects of co-administration. Using plethysmography, we measured respiratory parameters while breathing room air and during a 5% CO(2) challenge. S-Methadone alone had no respiratory effects. However, the R- plus S-methadone group showed greater respiratory depression and increased inspiratory time than the R-methadone group in the youngest animals, suggesting that the respiratory effects of R-methadone are augmented by S-methadone in early development.


Subject(s)
Analgesics, Opioid/chemistry , Analgesics, Opioid/toxicity , Methadone/chemistry , Methadone/toxicity , Respiratory Insufficiency/chemically induced , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Female , Guinea Pigs , Male , Motor Activity/drug effects , Oxygen Consumption/drug effects , Plethysmography , Pregnancy , Pulmonary Ventilation/drug effects , Respiratory Insufficiency/physiopathology , Respiratory Mechanics/drug effects , Stereoisomerism , Tidal Volume/drug effects , Time Factors
17.
Neurotoxicol Teratol ; 30(5): 448-54, 2008.
Article in English | MEDLINE | ID: mdl-18442893

ABSTRACT

This study uses a neonatal guinea pig model to compare the effects of in utero methadone or morphine exposure upon breathing control. We hypothesize that in utero methadone exposure will result in similar respiratory disturbances to those seen in morphine exposed neonates, but that the onset will be slower and the duration longer, due to methadone's longer elimination half-life. Pregnant Dunkin-Hartley guinea pigs received once-daily injections of methadone, morphine, or vehicle (saline) during the last half of gestation and pups were studied 3, 7, or 14 days after birth. In utero methadone or morphine exposure resulted in decreased birth weight compared to vehicle, and pups experienced a withdrawal syndrome which included increased locomotor activity and respiratory disturbances but no change in rectal temperature. Both opioid exposures increased inspiratory minute ventilation during CO(2) challenge at 3 days after birth, but only in morphine exposed pups was this withdrawal effect still present on day 7. Surprisingly, only morphine exposure increased inspiratory minute ventilation during room air breathing. We conclude that in utero methadone exposure is not equivalent to in utero morphine exposure. With respect to neonatal respiratory control, methadone-induced changes in respiration are only apparent during hypercapnia.


Subject(s)
Methadone/toxicity , Morphine/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Respiratory Center/drug effects , Respiratory Center/physiopathology , Respiratory Insufficiency/chemically induced , Animals , Animals, Newborn , Body Temperature/drug effects , Body Temperature/physiology , Body Weight/drug effects , Body Weight/physiology , Disease Models, Animal , Drug Administration Schedule , Female , Guinea Pigs , Half-Life , Hypercapnia/complications , Hypercapnia/physiopathology , Male , Metabolic Clearance Rate/physiology , Narcotics/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Respiratory Center/growth & development , Respiratory Insufficiency/physiopathology , Respiratory Physiological Phenomena/drug effects , Substance Withdrawal Syndrome/physiopathology , Toxicity Tests, Chronic
18.
Biochem Pharmacol ; 73(11): 1818-28, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17343833

ABSTRACT

Chronic opioid treatment leads to agonist-specific effects at the mu opioid receptor. The molecular mechanisms resulting from chronic opioid exposure include desensitization, internalization and down-regulation of membrane-bound mu opioid receptors (MOP). The purpose of this study was to compare the cellular regulation of guinea pig, human and rat MOP expressed in Chinese hamster ovary (CHO) cells, following exposure to two clinically important opioids, morphine and methadone. MOP expressing CHO cells were treated in culture with methadone or morphine for up to 48 h. Radioligand diprenorphine and [D-AIa(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO)-stimulated GTP gamma S binding assays were carried out using paired control and opioid-exposed CHO cells. Methadone induced downregulation of the mu opioid receptor, while morphine induced desensitization of the receptor for all three species. Furthermore, morphine predominantly decreased the potency of DAMGO to stimulate GTP gamma S binding, whereas methadone primarily reduced its efficacy. Changes in DAMGO potency and efficacy differed among species and depended on the opioid used to treat the cells. Our results showed similarities between guinea pig and human MOP for morphine-induced desensitization, but identified differences between the two for methadone-induced desensitization. In contrast, human and rat MOP differed in response to morphine treatment, but were not distinct in their response to methadone treatment. The guinea pig is an excellent and established animal model to study opioid effects, but its molecular opioid pharmacology has not been investigated thus far. These results can assist in understanding species differences in the effects of opioid ligands activating the mu opioid receptor.


Subject(s)
Analgesics, Opioid/pharmacology , Binding, Competitive/drug effects , Morphine/pharmacology , Receptors, Opioid, mu/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Female , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guinea Pigs , Humans , Rats , Receptors, Opioid, mu/drug effects , Species Specificity , Transfection
19.
Mol Cell Biol ; 26(2): 425-37, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16382135

ABSTRACT

Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.


Subject(s)
Carrier Proteins/metabolism , DNA Damage/physiology , DNA Replication , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Xenopus Proteins/metabolism , Amino Acid Sequence , Animals , Ataxia Telangiectasia Mutated Proteins , Caffeine/pharmacology , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Cross-Linking Reagents/pharmacology , DNA Repair/physiology , Female , In Vitro Techniques , Mitomycin/pharmacology , Molecular Sequence Data , Oocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , S Phase/drug effects , S Phase/physiology , Sequence Homology, Amino Acid , Xenopus laevis
20.
J Pathol ; 201(2): 198-203, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14517836

ABSTRACT

Fanconi anaemia (FA) is an inherited form of progressive pancytopenia associated with developmental defects, chromosomal instability, and cancer predisposition. At least seven distinct FA proteins function in concert to protect the genome, a key step being the activation of FANCD2 by mono-ubiquitination. This paper reports an immunohistochemical analysis of FANCD2 expression in normal human tissue. The highest expression was observed in maturing spermatocytes and fetal oocytes (consistent with a role for FANCD2 in meiosis) and in germinal centre cells of the spleen, tonsil, and lymph nodes (consistent with a role in proliferation). FANCD2 expression was also seen in tissues predisposed to cancer development in FA patients: haematopoietic cells, especially in the fetus, and squamous cell epithelia, particularly in the head and neck region and uterine cervix. FANCD2 expression was also occasionally seen in the breast and Fallopian tube epithelium, the respiratory epithelium of the trachea, and the exocrine cells of the pancreas, indicating that these tissues may also be cancer-prone in FA. FANCD2 expression is frequently expressed in proliferating cells as demonstrated by Ki-67 immunofluorescence double staining, consistent with a function of FANCD2 in DNA replication.


Subject(s)
Biomarkers, Tumor/analysis , Fanconi Anemia/pathology , Nuclear Proteins/analysis , Adult , Biomarkers/analysis , Cell Division , Cell Line, Transformed , DNA Replication , Fanconi Anemia Complementation Group D2 Protein , Female , Fetus/chemistry , Germ Cells/chemistry , Humans , Immunohistochemistry/methods , Ki-67 Antigen/analysis , Male , Meiosis , Predictive Value of Tests , Sensitivity and Specificity , Stem Cells/chemistry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...