Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci Med ; 21(2): 164-170, 2022 06.
Article in English | MEDLINE | ID: mdl-35719222

ABSTRACT

This study investigated the effects of precooling via crushed ice ingestion on cognitive performance during repeated-sprint cycling in the heat. Nine males, non-heat acclimatised to heat (mean age: 28.2 ± 2.7 y; height: 175.7 ± 9.7 cm; body-mass: 76.9 ± 10.6 kg) completed a 30 min bout of repeated-sprint (36 × 4 s sprints, interspersed with 56 s rest-breaks) on a cycle ergometer in a climate chamber (35°C, 70% relative humidity). Crushed ice ingestion (7g·kg-1, -0.4°C, ICE) or no cooling (CON) interventions were completed at rest, in the climate chamber, 30 min prior to exercise. Working memory was assessed via the serial seven test (S7) and the automated operation span task (OSPAN) at various time points before, during, and post-exercise. Core body temperature (Tc), forehead temperature (Th), and thermal sensation (TS) were assessed throughout the protocol. Working memory significantly declined during exercise in CON as measured by S7 (p = 0.01) and OSPAN (p = 0.03); however, it was preserved in ICE with no change at the end of exercise in either S7 or OSPAN scores compared to baseline (p = 0.50, p = 0.09, respectively). Following precooling, Th (-0.59°C, p < 0.001) and Tc (-0.67°C, p = 0.005) were significantly decreased in ICE compared to CON. At the end of the exercise, ICE significantly reduced Tc compared to CON (p = 0.03), but no significant differences were recorded for Th. Further, TS was lower following precooling in ICE (p = 0.008) but not during exercise. In conclusion, ice ingestion significantly reduced Th and Tc and facilitated maintenance of cognitive performance during repeated-sprint exercise in the heat, which may lead to better decision making.


Subject(s)
Bicycling , Hot Temperature , Adult , Cognition , Eating , Heart Rate , Humans , Male
2.
J Sports Sci Med ; 21(1): 23-32, 2022 03.
Article in English | MEDLINE | ID: mdl-35250330

ABSTRACT

This study assessed the effectiveness of head cooling during exercise in the heat on cognitive performance, either alone or with ice ingestion. Ten healthy males, non-acclimatized to heat, ran (70% V̇O2peak) for 2×30 min in heat (35 ± 0.9°C, 68.2 ± 6.9% RH). Participants completed 3 trials: 10 min of head cooling during exercise (HC); precooling with crushed ice (7gikg-1) and head cooling during exercise (MIX); or no-cooling/control (CON). Working memory was assessed using the automated operation span task (OSPAN) and serial seven test (S7). Following MIX, S7 scores were improved compared to CON (12 ± 9.5, p = 0.004, d = 1.42, 0.34-2.28) and HC (4 ± 5.5, p = 0.048, d = 0.45, -0.47 to 1.3) during exercise. Moderate to large effect sizes were recorded for S7 and OSPAN following MIX and HC compared to CON, suggesting a tendency for improved cognitive performance during exercise in heat. Following precooling (MIX), core body temperature (Tc) and forehead temperature (Th) were lower compared to baseline (-0.75 ± 0.37°C, p < 0.001; -0.31 ± 0.29°C, p = 0.008, respectively) but not in HC or CON (p > 0.05). Thermal sensation (TS) was lower in MIX and HC compared to CON during exercise (p < 0.05). The reduction in Tc, Th and TS with MIX may have attenuated the effect of heat and subsequently improved working memory during exercise in heat.


Subject(s)
Hot Temperature , Ice , Cognition , Eating , Heart Rate , Humans , Male
3.
J Sports Sci Med ; 20(1): 69-76, 2021 03.
Article in English | MEDLINE | ID: mdl-33707989

ABSTRACT

This study investigated the effectiveness of head cooling on cognitive performance after 30 min and 60 min of running in the heat. Ten moderately-trained, non-heat-acclimated, male endurance athletes (mean age: 22 ± 6.6 y; height: 1.78 ± 0.10 m; body-mass: 75.7 ± 15.6 kg; VO2peak: 51.6 ± 4.31 mL-1>kg-1>min) volunteered for this study. Participants performed two experimental trials: head cooling versus no-cooling (within-subjects factor with trial order randomized). For each trial, participants wore a head-cooling cap for 15 min with the cap either cooled to 0°C (HC) or not cooled (22°C; CON). Participants then completed 2 × 30 min running efforts on a treadmill at 70% VO2peak in hot conditions (35°C, 70% relative humidity), with a 10 min rest between efforts. Working memory was assessed using an operation span (OSPAN) task immediately prior to the 15 min cooling/no-cooling period (22°C, 35% RH) and again after 30 min and 60 min of running in the heat. Numerous physiological variables, including gastrointestinal core temperature (Tc) were assessed over the protocol. Scores for OSPAN were similar between trials, with no interaction effect or main effects for time and trial found (p = 0.58, p = 0.67, p = 0.54, respectively). Forehead temperature following precooling was lower in HC (32.4 ± 1.6°C) compared with CON (34.5 ± 1.1°C) (p = 0.01), however, no differences were seen in Tc, skin temperature, heart rate and ratings of perceived exertion between HC and CON trials at any time point assessed (p > 0.05). In conclusion, despite HC reducing forehead temperature prior to exercise, it did not significantly improve cognitive performance during (half-time break) or after subsequent exercise in hot environmental conditions, compared to a no cooling control.


Subject(s)
Cognition/physiology , Head , Hot Temperature , Hypothermia, Induced/methods , Running/physiology , Body Temperature , Gastrointestinal Tract/physiology , Heart Rate , Humans , Male , Memory, Short-Term/physiology , Oxygen Consumption/physiology , Skin Temperature , Time Factors , Young Adult
4.
Int J Sport Nutr Exerc Metab ; 27(1): 67-75, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27459723

ABSTRACT

This study examined the effects of precooling via ice ingestion on female cycling performance in hot, humid conditions. Ten female endurance athletes, mean age (28 ± 6 y), height (167.6 ± 6.5 cm) and body-mass (68.0 ± 11.5 kg) participated in the study. Participants completed an 800 kJ cycle time-trial in hot, humid conditions (34.9 ± 0.3 °C, 49.8 ± 3.5% RH). This was preceded by the consumption of 7 g∙kg-1 of crushed ice (ICE) or water (CON). There was no difference in performance time (CON 3851 ± 449 s; ICE 3767 ± 465 s), oxygen consumption (CON 41.6 ± 7.0 ml∙kg∙min-1; ICE 42.4 ± 6.0 ml∙kg∙min-1) or respiratory exchange ratio (CON 0.88 ± 0.05; ICE 0.90 ± 0.06) between conditions (p > .05, d < 0.5). Core and skin temperature following the precooling period were lower in ICE (Tc 36.4 ± 0.4 °C; Tsk 31.6 ± 1.2 °C) compared with CON (Tc 37.1 ± 0.4 °C; Tsk 32.4 ± 0.7 °C) and remained lower until the 100 kJ mark of the cycle time-trial (p < .05, d > 1.0). Sweat onset occurred earlier in CON (228 ± 113 s) compared with ICE (411 ± 156 s) (p < .05, d = 1.63). Mean thermal sensation (CON 1.8 ± 2.0; ICE 1.2 ± 2.5, p < .05, d = 2.51), perceived exertion (CON 15.3 ± 2.9; ICE 14.9 ± 3.0, p < .05, d = 0.38) and perceived thirst (CON 5.6 ± 2.2; ICE 4.6 ± 2.4, p < .05, d = 0.98) were lower in ICE compared with CON. Crushed ice ingestion did not improve cycling performance in females, although perceptual responses were reduced.


Subject(s)
Athletic Performance , Bicycling , Hot Temperature , Ice , Thirst , Adult , Athletes , Body Mass Index , Dose-Response Relationship, Drug , Female , Heart Rate , Humans , Oxygen Consumption , Physical Endurance , Physical Exertion , Skin Temperature , Sweating , Thermosensing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...