Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 21(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204351

ABSTRACT

Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence-structure-function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.


Subject(s)
Evolution, Molecular , Intrinsically Disordered Proteins/genetics , Plant Proteins/genetics , Plants/genetics , Animals , Gene Expression Regulation , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/classification , Plants/metabolism , Protein Conformation , Protein Folding
2.
Chembiochem ; 21(11): 1597-1604, 2020 06 02.
Article in English | MEDLINE | ID: mdl-31930693

ABSTRACT

Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen-evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn4 CaO5 cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pKa values of water-accessible aspartate and glutamate side-chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pKa values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH-dependent changes in backbone chemical shifts in the area of the lumen-exposed loops are observed, indicating conformational changes. In conclusion, we present a site-specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis.


Subject(s)
Bacterial Proteins/chemistry , Photosynthesis/physiology , Photosystem II Protein Complex/chemistry , Protons , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , Thermosynechococcus/enzymology , Thermosynechococcus/genetics , Water/chemistry , Water/metabolism
3.
Nat Commun ; 10(1): 857, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787279

ABSTRACT

Microtubules are filamentous structures necessary for cell division, motility and morphology, with dynamics critically regulated by microtubule-associated proteins (MAPs). Here we outline the molecular mechanism by which the MAP, COMPANION OF CELLULOSE SYNTHASE1 (CC1), controls microtubule bundling and dynamics to sustain plant growth under salt stress. CC1 contains an intrinsically disordered N-terminus that links microtubules at evenly distributed points through four conserved hydrophobic regions. By NMR and live cell analyses we reveal that two neighboring residues in the first hydrophobic binding motif are crucial for the microtubule interaction. The microtubule-binding mechanism of CC1 is reminiscent to that of the prominent neuropathology-related protein Tau, indicating evolutionary convergence of MAP functions across animal and plant cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Salt Tolerance/physiology , tau Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cellulose/biosynthesis , Glucosyltransferases/metabolism , Hydrophobic and Hydrophilic Interactions , Microtubule-Associated Proteins/genetics , Salt Tolerance/genetics , Seedlings/growth & development
4.
Nat Commun ; 9(1): 4043, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279485

ABSTRACT

Activation of the innate immune pattern recognition receptor NOD2 by the bacterial muramyl-dipeptide peptidoglycan fragment triggers recruitment of the downstream adaptor kinase RIP2, eventually leading to NF-κB activation and proinflammatory cytokine production. Here we show that full-length RIP2 can form long filaments mediated by its caspase recruitment domain (CARD), in common with other innate immune adaptor proteins. We further show that the NOD2 tandem CARDs bind to one end of the RIP2 CARD filament, suggesting a mechanism for polar filament nucleation by activated NOD2. We combine X-ray crystallography, solid-state NMR and high-resolution cryo-electron microscopy to determine the atomic structure of the helical RIP2 CARD filament, which reveals the intermolecular interactions that stabilize the assembly. Using structure-guided mutagenesis, we demonstrate the importance of RIP2 polymerization for the activation of NF-κB signalling by NOD2. Our results could be of use to develop new pharmacological strategies to treat inflammatory diseases characterised by aberrant NOD2 signalling.


Subject(s)
NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Caspase Activation and Recruitment Domain , HEK293 Cells , Humans , Protein Conformation , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL