Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 368(3): 435-445, 2019 03.
Article in English | MEDLINE | ID: mdl-30563942

ABSTRACT

Follistatin is an endogenous glycoprotein that promotes growth and repair of skeletal muscle by sequestering inhibitory ligands of the transforming growth factor-ß superfamily and may therefore have therapeutic potential for neuromuscular diseases. Here, we sought to determine the suitability of a newly engineered follistatin fusion protein (FST288-Fc) to promote localized, rather than systemic, growth of skeletal muscle by capitalizing on the intrinsic heparin-binding ability of the follistatin-288 isoform. As determined by surface plasmon resonance and cell-based assays, FST288-Fc binds to activin A, activin B, myostatin (growth differentiation factor GDF8), and GDF11 with high affinity and neutralizes their activity in vitro. Intramuscular administration of FST288-Fc in mice induced robust, dose-dependent growth of the targeted muscle but not of surrounding or contralateral muscles, in contrast to the systemic effects of a locally administered fusion protein incorporating activin receptor type IIB (ActRIIB-Fc). Furthermore, systemic administration of FST288-Fc in mice did not alter muscle mass or body composition as determined by NMR, which again contrasts with the pronounced systemic activity of ActRIIB-Fc when administered by the same route. Subsequent analysis revealed that FST288-Fc in the circulation undergoes rapid proteolysis, thereby restricting its activity to individual muscles targeted by intramuscular administration. These results indicate that FST288-Fc can produce localized growth of skeletal muscle in a targeted manner with reduced potential for undesirable systemic effects. Thus, FST288-Fc and similar agents may be beneficial in the treatment of disorders with muscle atrophy that is focal, asymmetric, or otherwise heterogeneous.


Subject(s)
Follistatin/administration & dosage , Immunoglobulin G/administration & dosage , Muscle, Skeletal/drug effects , Muscle, Skeletal/growth & development , Recombinant Fusion Proteins/administration & dosage , Amino Acid Sequence , Animals , Dose-Response Relationship, Drug , Follistatin/genetics , Follistatin/metabolism , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Injections, Intramuscular , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Protein Structure, Secondary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
2.
Blood ; 123(25): 3864-72, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24795345

ABSTRACT

In ß-thalassemia, unequal production of α- and ß-globin chains in erythroid precursors causes apoptosis and inhibition of late-stage erythroid differentiation, leading to anemia, ineffective erythropoiesis (IE), and dysregulated iron homeostasis. Here we used a murine model of ß-thalassemia intermedia (Hbb(th1/th1) mice) to investigate effects of a modified activin receptor type IIB (ActRIIB) ligand trap (RAP-536) that inhibits Smad2/3 signaling. In Hbb(th1/th1) mice, treatment with RAP-536 reduced overactivation of Smad2/3 in splenic erythroid precursors. In addition, treatment of Hbb(th1/th1) mice with RAP-536 reduced α-globin aggregates in peripheral red cells, decreased the elevated reactive oxygen species present in erythroid precursors and peripheral red cells, and alleviated anemia by promoting differentiation of late-stage erythroid precursors and reducing hemolysis. Notably, RAP-536 treatment mitigated disease complications of IE, including iron overload, splenomegaly, and bone pathology, while reducing erythropoietin levels, improving erythrocyte morphology, and extending erythrocyte life span. These results implicate signaling by the transforming growth factor-ß superfamily in late-stage erythropoiesis and reveal potential of a modified ActRIIB ligand trap as a novel therapeutic agent for thalassemia syndrome and other red cell disorders characterized by IE.


Subject(s)
Activin Receptors, Type II/genetics , Erythropoiesis/drug effects , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , beta-Thalassemia/drug therapy , Activin Receptors, Type II/metabolism , Anemia/blood , Anemia/genetics , Anemia/prevention & control , Animals , Blotting, Western , Cell Differentiation/drug effects , Cell Differentiation/genetics , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythroid Precursor Cells/drug effects , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , Hemolysis/drug effects , Hemolysis/genetics , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Iron Overload/metabolism , Iron Overload/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism , beta-Globins/genetics , beta-Globins/metabolism , beta-Thalassemia/blood , beta-Thalassemia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...