Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genomics ; 16(1): 133, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322474

ABSTRACT

BACKGROUND: The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS: We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS: We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION: Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.


Subject(s)
Deafness , Stria Vascularis , Mice , Animals , Stria Vascularis/metabolism , Stria Vascularis/pathology , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Cochlea/metabolism , Cochlea/pathology , Deafness/genetics , Sulfate Transporters/genetics , RNA/metabolism
2.
Life Sci Alliance ; 6(3)2023 03.
Article in English | MEDLINE | ID: mdl-36574989

ABSTRACT

Hearing loss is the most common sensory deficit, of which genetic etiologies are a frequent cause. Dominant and recessive mutations in TMC1, a gene encoding the pore-forming subunit of the hair cell mechanotransduction channel, cause DFNA36 and DFNB7/11, respectively, accounting for ∼2% of genetic hearing loss. Previous work has established the efficacy of mutation-targeted RNAi in treatment of murine models of autosomal dominant non-syndromic deafness. However, application of such approaches is limited by the infeasibility of development and validation of novel constructs for each variant. We developed an allele-non-specific approach consisting of mutation-agnostic RNAi suppression of both mutant and WT alleles, co-delivered with a knockdown-resistant engineered WT allele with or without the use of woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to augment transgene expression. This therapeutic construct was delivered into the mature murine model of DFNA36 with an AAV vector and achieved robust hair cell and auditory brainstem response preservation. However, WPRE-enhanced Tmc1 expression resulted in inferior outcomes, suggesting a role for gene dosage optimization in future TMC1 gene therapy development.


Subject(s)
Hearing Loss , Mechanotransduction, Cellular , Mice , Animals , RNA Interference , Hearing Loss/genetics , Hearing Loss/therapy , Mutation/genetics , Membrane Proteins/genetics
3.
Genet Med ; 24(12): 2555-2567, 2022 12.
Article in English | MEDLINE | ID: mdl-36194208

ABSTRACT

PURPOSE: De novo variants (DNVs) are a well-recognized cause of genetic disorders. The contribution of DNVs to hearing loss (HL) is poorly characterized. We aimed to evaluate the rate of DNVs in HL-associated genes and assess their contribution to HL. METHODS: Targeted genomic enrichment and massively parallel sequencing were used for molecular testing of all exons and flanking intronic sequences of known HL-associated genes, with no exclusions on the basis of type of HL or clinical features. Segregation analysis was performed, and previous reports of DNVs in PubMed and ClinVar were reviewed to characterize the rate, distribution, and spectrum of DNVs in HL. RESULTS: DNVs were detected in 10% (24/238) of trios for whom segregation analysis was performed. Overall, DNVs were causative in at least ∼1% of probands for whom a genetic diagnosis was resolved, with marked variability based on inheritance mode and phenotype. DNVs of MITF were most common (21% of DNVs), followed by GATA3 (13%), STRC (13%), and ACTG1 (8%). Review of reported DNVs revealed gene-specific variability in contribution of DNV to the mutational spectrum of HL-associated genes. CONCLUSION: DNVs are a relatively common cause of genetic HL and must be considered in all cases of sporadic HL.


Subject(s)
Deafness , Hearing Loss , Humans , Hearing Loss/genetics , High-Throughput Nucleotide Sequencing , Mutation , Exons , Intercellular Signaling Peptides and Proteins
4.
Cell Rep ; 26(11): 3160-3171.e3, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865901

ABSTRACT

Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, but its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity, and difficulty dissociating the ultra-rare cells of the membranous cochlea. Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs), and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We harvested more than 200 murine IHCs, OHCs, and DCs from post-natal days 15 (p15) to 228 (p228) and leveraged both short- and long-read single-cell RNA sequencing to profile transcript abundance and structure. Our results provide insights into the expression profiles of these cells and document an unappreciated complexity in isoform variety in deafness-associated genes. This refined view of transcription in the organ of Corti improves our understanding of the biology of hearing and deafness.


Subject(s)
Deafness/genetics , Organ of Corti/metabolism , Transcriptome , Animals , Female , Gene Expression Profiling , Male , Mice , Organ of Corti/growth & development , Single-Cell Analysis
5.
J Biomed Inform ; 54: 106-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25595567

ABSTRACT

Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments.


Subject(s)
DNA Copy Number Variations/genetics , DNA/analysis , Oligonucleotide Array Sequence Analysis/methods , Algorithms , DNA/genetics , Female , Humans , Male , Polymorphism, Single Nucleotide , ROC Curve , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...