Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Morphol ; 42(1-2): 81-90, 2005.
Article in English | MEDLINE | ID: mdl-16123027

ABSTRACT

Fatigue damage in bone occurs in the form of microcracks and plays an important role in the initiation of bone remodelling and in the occurrence of stress and fragility fractures. The process by which fatigue microcracks in bone initiate and grow remains poorly understood. The aim of this study was to investigate the microscopic tissue changes associated with microcracks during crack propagation in cortical bone and the influence of bone microstructure on this process. Cracks were mechanically initiated and extended longitudinally in a two-stage process, in six bovine tibial compact tension specimens. The sequential application of chelating fluorochromes, xylenol orange followed by calcein, allowed the nature of microcrack damage at different stages of propagation to be monitored by laser scanning confocal microscopy. Specimens were imaged at a focal plane 20 microm below the samples' surface, or as a series of z-plane images collected to a maximal depth of 200 microm and 35 microm for x 4 and x 40 objectives, respectively. Z-series image stacks were then reconstructed using Amira 3.0 software. Confocal images showed that xylenol orange localised to the crack surface and did not migrate into the crack's extension following further mechanical propagation. Similarly, calcein stained the extended crack's surface and displayed minimal incorporation within the original crack. High resolution confocal images provided a detailed visual description of the crack's 'process zone', and 'process zone wake'. Additionally, an 'interface region' was revealed, displaying a clear distinction between the end of the first crack and the commencement of its extension. Confocal images of the interface region demonstrated that the extended crack forms a continuum with the pre-existing crack and propagates through the former process zone. Upon viewing the three-dimensional reconstructed images, we found evidence suggesting a submicroscopic tissue involvement in fatigue damage, in addition to the potential influence of vascular canals and osteocyte lacunae on its propagation through the bone matrix. This study has provided new insights into the process of fatigue damage growth in bone and factors influencing its progression through the bone matrix. Confocal microscopy in combination with sequential chelating fluorochrome labelling is a valuable technique for monitoring microcrack growth in bone.


Subject(s)
Bone and Bones/anatomy & histology , Chelating Agents/pharmacology , Fluorescent Dyes/pharmacology , Fractures, Stress/pathology , Tibia/pathology , Animals , Bone Remodeling , Bone and Bones/pathology , Cattle , Fluoresceins/chemistry , Fluoresceins/metabolism , Fractures, Bone , Microscopy, Confocal , Phenols , Software , Stress, Mechanical , Sulfoxides , Xylenes/pharmacology
2.
Ann Bot ; 89(5): 613-20, 2002 May.
Article in English | MEDLINE | ID: mdl-12099536

ABSTRACT

The study was conducted to identify the self-incompatibility mechanism in Eucalyptus globulus ssp. globulus. Controlled self- and cross-pollinations were conducted on individual flowers from three mature trees that had self-incompatibility levels of 76, 99.6 and 100%. Flowers were harvested at 4, 6 and 8 weeks after pollination. Embryology was investigated by bright field microscopy on material harvested at 4 and 6 weeks after pollination. Fertilization had taken place at 4 weeks after pollination with zygotes and free nuclear endosperm visible. There was a greater proportion of healthy, fertilized ovules in the cross- compared with the self-pollination treatment, and approx. half the ovules examined from both pollen treatments were not fertilized or were degenerating. By 6 weeks after pollination a few zygotes were starting to divide. The number of healthy, fertilized ovules was still greater in the cross-pollination treatment, but the number of healthy fertilized ovules was lower in both treatments compared with 4 weeks after pollination, and many ovules were degenerating. Fertilized ovules were significantly larger than non-fertilized or degenerating ovules and this difference was detectable by eye at 6 and 8 weeks after pollination. The mechanism of self-incompatibility appears to have both late pre- and post-zygotic components.


Subject(s)
Eucalyptus/physiology , Plant Stems/physiology , Pollen/physiology , Seeds/growth & development , Algorithms , Cell Size/physiology , Eucalyptus/embryology , Fertility/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...