Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Sports Sci Med Rehabil ; 16(1): 144, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956590

ABSTRACT

BACKGROUND: Applying whole-body electromyostimulation (wbEMS) to voluntary activation of the muscle is known to impact motor unit recruitment. Thus, wbEMS as an additional training stimulus enhances force-related capacities. This study aimed to evaluate the mono- and multiarticular strength adaptations to a running intervention with wbEMS compared to running without wbEMS. METHODS: In a randomized controlled trial (RCT), 59 healthy participants (32 female/ 27 male, 41 ± 7 years) with minor running experience conducted an eight-week running intervention (2x/ week à 20 min) with a wbEMS suit (EG) or without wbEMS (control group, CG). Maximal isokinetic knee extensor and flexor strength and jump height during countermovement jumps were recorded prior and after the intervention to assess maximal strength and power. RESULTS: Following eight weeks of running, maximal isokinetic knee extension torque decreased significantly over time for both interventions (EG Δ -4%, CG Δ -4%; F(1, 44.14) = 5.96, p = 0.02, η = 0.12). No changes were observed for flexion torque (F(1, 43.20) = 3.93, p = 0.05, η = 0.08) or jump height (F(1, 43.04) = 0.32, p = 0.57, η  = 0.01). CONCLUSIONS: The outcomes indicate that there is no additional effect over neuromuscular function adaptations with the inclusion of wbEMS during running training. Knee extensor strength is even slightly reduced which supports the principle of training specificity in regards to strength adaptation. We conclude that strength improvements cannot be achieved by running with wbEMS. TRIAL REGISTRATION: German Clinical Trials Register, ID DRKS00026827, date 10/26/21.

2.
BMC Sports Sci Med Rehabil ; 15(1): 126, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794506

ABSTRACT

BACKGROUND: This study aimed to evaluate the physiological and metabolic adaptations to an eight-week running intervention with whole-body electromyostimulation (wbEMS) compared to running without wbEMS. METHODS: In a randomized controlled trial (RCT), 59 healthy participants (32 female/ 27 male, 41 ± 7 years, rel.V̇O2max 40.2 ± 7.4 ml/min/kg) ran twice weekly à 20 min for eight weeks either with a wbEMS suit (EG) or without wbEMS (control group, CG). Before and after the intervention, (i) rel.V̇O2max, heart rate and time to exhaustion were recorded with an incremental step test with an incremental rate of 1.20 km/h every 3 min. They were interpreted at aerobic and (indirect) anaerobic lactate thresholds as well as at maximum performance. (ii) Resting metabolic rate (RQ) as well as (iii) body composition (%fat) were assessed. RESULTS: Following the intervention, V̇O2max was significantly enhanced for both groups (EG ∆13 ± 3%, CG ∆9 ± 3%). Velocity was elevated at lactate thresholds and maximum running speed (EG ∆3 ± 1%, CG ∆2 ± 1%); HRmax was slightly reduced by -1 beat/min. No significant changes were observed for time until exhaustion and lactate. RQ was significantly enhanced following both trainings by + 7%. %fat was reduced for both groups (EG ∆-11 ± 3%, CG ∆-16 ± 5%), without any changes in body mass. Results did not differ significantly between groups. CONCLUSIONS: Both interventions had a positive impact on aerobic power. The rightward shift of the time-velocity graph points towards improved endurance performance. The effects of wbEMS are comparable to those after high-intensity training and might offer a time-efficient alternative to affect physiological and metabolic effects. TRIAL REGISTRATION: German Clinical Trials Register, ID DRKS00026827, date 10/26/21.

3.
Res Q Exerc Sport ; 94(4): 1133-1140, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36624960

ABSTRACT

Objective: The aim of the current study was to evaluate the physiological and metabolic responses to running with whole-body electromyostimulation (wbEMS) compared to running without electromyostimulation (control, CG). Methods: Twenty healthy participants (9 male/11 female, age 42 ±7 years) conducted an incremental step test with respiratory gas analysis until exhaustion. Trials were conducted as wbEMS and CG in a random order. As outcome measures, (A) objective total exhaustion, (B) athletic responses (max. time and velocity) and (C) physiological and metabolic responses (V'O2/ kg, V'E, EE, RER, lactate) were compared. (D) The impact on the skeletal muscle was assessed prior, 48 h & 72 h after trial. Results: During both trials, participants (A) ran until total exhaustion. Nonetheless, (B) time and velocity till exhaustion as well as (C) RER prior to the first lactate threshold and V'E were reduced with wbEMS. All other correlates did not differ significantly between wbEMS and CG. Following 48 h and 72 h after the trial with wbEMS, (D) the impact on the skeletal muscle was 7- to 9-fold higher compared to baseline values. Values differed significantly to those after running without wbEMS. Conclusion: With the additional stimulation during voluntary activation, wbEMS induces earlier fatigue and a shift in energy metabolism toward fat utilization. Even during aerobic endurance tasks, a great impact on the skeletal muscle indicated by the rise in CK could be observed which promotes wbEMS as an alternative training stimulus that is easy-to-apply and effective during endurance training.


Subject(s)
Electric Stimulation Therapy , Running , Humans , Male , Female , Adult , Middle Aged , Running/physiology , Exercise Test , Lactic Acid , Oxygen Consumption/physiology , Physical Endurance/physiology , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...