Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 674835, 2021.
Article in English | MEDLINE | ID: mdl-34367083

ABSTRACT

Recent evidence suggests an association between endometrial cancer and the understudied bacterial species Porphyromonas somerae. This association was demonstrated in previous work that indicated a significantly enriched abundance of P. somerae in the uterine microbiome of endometrial cancer patients. Given the known associations of the Porphyromonas genus and oral cancer, we hypothesized that P. somerae may play a similar pathogenic role in endometrial cancer via intracellular activity. Before testing our hypothesis, we first characterized P. somerae biology, as current background data is limited. These novel characterizations include growth curves in liquid medium and susceptibility tests to antibiotics. We tested our hypothesis by examining growth changes in response to 17ß-estradiol, a known risk factor for endometrial cancer, followed by metabolomic profiling in the presence and absence of 17ß-estradiol. We found that P. somerae exhibits increased growth in the presence of 17ß-estradiol of various concentrations. However, we did not find significant changes in metabolite levels in response to 17ß-estradiol. To study direct host-microbe interactions, we used in vitro invasion assays under hypoxic conditions and found evidence for intracellular invasion of P. somerae in endometrial adenocarcinoma cells. We also examined these interactions in the presence of 17ß-estradiol but did not observe changes in invasion frequency. Invasion was shown using three lines of evidence including visualization via differential staining and brightfield microscopy, increased frequency of bacterial recovery after co-culturing, and in silico methods to detail relevant genomic and transcriptomic components. These results underscore potential intracellular phenotypes of P. somerae within the uterine microbiome. Furthermore, these results raise new questions pertaining to the role of P. somerae in the progression of endometrial cancer.

2.
Sci Rep ; 9(1): 19213, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844128

ABSTRACT

Incidence rates for endometrial cancer (EC) are rising, particularly in postmenopausal and obese women. Previously, we showed that the uterine and vaginal microbiome distinguishes patients with EC from those without. Here, we sought to examine the impact of patient factors (such as menopause status, body mass index, and vaginal pH) in the microbiome in the absence of EC and how these might contribute to the microbiome signature in EC. We find that each factor independently alters the microbiome and identified postmenopausal status as the main driver of a polymicrobial network associated with EC (ECbiome). We identified Porphyromas somerae presence as the most predictive microbial marker of EC and we confirm this using targeted qPCR, which could be of use in detecting EC in high-risk, asymptomatic women. Given the established pathogenic behavior of P. somerae and accompanying network in tissue infections and ulcers, future investigation into their role in EC is warranted.


Subject(s)
Endometrial Neoplasms/microbiology , Microbiota/physiology , Postmenopause/physiology , Body Mass Index , Endometrium/microbiology , Female , Humans , Middle Aged , Porphyromonas/genetics , Risk Factors , Uterus/microbiology , Vagina/microbiology
3.
PLoS One ; 12(3): e0173848, 2017.
Article in English | MEDLINE | ID: mdl-28358811

ABSTRACT

BACKGROUND: Injury to the airways after smoke inhalation is a major mortality risk factor in victims of burn injuries, resulting in a 15-45% increase in patient deaths. Damage to the airways by smoke may induce acute respiratory distress syndrome (ARDS), which is partly characterized by hypoxemia in the airways. While ARDS has been associated with bacterial infection, the impact of hypoxemia on airway microbiota is unknown. Our objective was to identify differences in microbiota within the airways of burn patients who develop hypoxemia early after inhalation injury and those that do not using next-generation sequencing of bacterial 16S rRNA genes. RESULTS: DNA was extracted from therapeutic bronchial washings of 48 patients performed within 72 hours of hospitalization for burn and inhalation injury at the North Carolina Jaycee Burn Center. DNA was prepared for sequencing using a novel molecule tagging method and sequenced on the Illumina MiSeq platform. Bacterial species were identified using the MTToolbox pipeline. Patients with hypoxemia, as indicated by a PaO2/FiO2 ratio ≤ 300, had a 30% increase in abundance of Streptococcaceae and Enterobacteriaceae and 84% increase in Staphylococcaceae as compared to patients with a PaO2/FiO2 ratio > 300. Wilcoxon rank-sum test identified significant enrichment in abundance of OTUs identified as Prevotella melaninogenica (p = 0.042), Corynebacterium (p = 0.037) and Mogibacterium (p = 0.048). Linear discriminant effect size analysis (LefSe) confirmed significant enrichment of Prevotella melaninognica among patients with a PaO2/FiO2 ratio ≤ 300 (p<0.05). These results could not be explained by differences in antibiotic treatment. CONCLUSIONS: The airway microbiota following burn and inhalation injury is altered in patients with a PaO2/FiO2 ratio ≤ 300 early after injury. Enrichment of specific taxa in patients with a PaO2/FiO2 ratio ≤ 300 may indicate airway environment and patient changes that favor these microbes. Longitudinal studies are necessary to identify stably colonizing taxa that play roles in hypoxemia and ARDS pathogenesis.


Subject(s)
Hypoxia/genetics , Microbiota/genetics , Respiratory Distress Syndrome/genetics , Smoke Inhalation Injury/genetics , Adolescent , Adult , Aged , Burns, Inhalation/genetics , Burns, Inhalation/microbiology , Child , Child, Preschool , Female , Humans , Hypoxia/microbiology , Hypoxia/pathology , Infant , Longitudinal Studies , Male , Middle Aged , North Carolina , Prospective Studies , RNA, Ribosomal, 16S/genetics , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/microbiology , Respiratory System/microbiology , Respiratory System/pathology , Risk Factors , Smoke Inhalation Injury/microbiology , Smoke Inhalation Injury/pathology
4.
Lipids ; 45(9): 777-84, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20730604

ABSTRACT

Certain fatty acids in canola oil (CAN) have been associated with a reduced risk of breast cancer. This study assessed the effects of CAN on proliferation and death of human breast cancer cells in vitro and in vivo in chemically induced mammary carcinogenesis. We hypothesize that CAN reduces breast cancer cell growth by inducing cell death. In a series of in vitro experiments, human breast cancer T47D and MCF-7 cells were cultured and treated with CAN and two chemotherapeutic drugs, tamoxifen and cerulenin. Cell proliferation and caspase-3 and p53 activities were measured. Reduced cancer cell growth and increased expression of caspase-3 and p53 were seen in T47D and MCF-7 cells treated with CAN. Moreover, CAN showed synergistic cancer cell growth inhibition effects with tamoxifen and cerulenin. In a subsequent live animal experiment, 42 female Sprague-Dawley rats were randomly assigned to corn oil (CORN) or CAN diets, and mammary tumors were chemically induced by N-nitroso-N-methylurea. CAN-dieted rats had reduced tumor volumes and showed an increased survival rate as compared to CORN-dieted rats. We demonstrated that CAN has suppressive effects on cancer growth, and reduces tumor volumes. The results suggest that CAN may have inhibitory effects on breast cancer cell growth, and warrants further investigation of the synergistic effects of CAN with anti-cancer drugs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Fatty Acids, Monounsaturated/therapeutic use , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Cerulenin/therapeutic use , Drug Synergism , Fatty Acids, Monounsaturated/administration & dosage , Female , Humans , Rapeseed Oil , Rats , Rats, Sprague-Dawley , Tamoxifen/therapeutic use , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...