Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Med Devices ; 18(7): 669-696, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33539198

ABSTRACT

INTRODUCTION: Computer-assisted surgery (CAS) is a broad surgical methodology that utilizes computer technology to both plan and execute surgical intervention. CAS is widespread in both medicine and dentistry as it allows for minimally invasive and precise surgical procedures. Key innovations in volumetric imaging, virtual surgical planning software, instrument tracking, and robotics have assisted in facilitating the transfer of surgical plans to precise execution of surgical procedures. CAS has long been used in certain medical specialties including neurosurgery, cardiology, orthopedic surgery, otolaryngology, and interventional radiology, and has since expanded to oral and maxillofacial application, particularly for computer-assisted implant surgery. AREAS COVERED: This review provides an updated overview of the most current research for CAS in medicine and dentistry, with a focus on neurosurgery and dental implant surgery. The MEDLINE electronic database was searched and relevant original and review articles from 2005 to 2020 were included. EXPERT OPINION: Recent literature suggests that CAS performs favorably in both neurosurgical and dental implant applications. Computer-guided surgical navigation is well entrenched as standard of care in neurosurgery. Whereas static computer-assisted implant surgery has become established in dentistry, dynamic computer-assisted navigation is newly poised to trend upward in dental implant surgery.


Subject(s)
Robotics , Surgery, Computer-Assisted , Humans , Imaging, Three-Dimensional , Patient Care Planning , Software
2.
PeerJ ; 2: e409, 2014.
Article in English | MEDLINE | ID: mdl-24949232

ABSTRACT

Conspecific rape often increases male reproductive success. However, the haste and aggression of forced copulations suggests that males may sometimes rape heterospecific females, thus making rape a likely, but undocumented, source of hybrids between broadly sympatric species. We present evidence that heterospecific rape may be the source of hybrids between Black-footed and Laysan Albatrosses (Phoebastria nigripes, and P. immutabilis, respectively). Extensive field studies have shown that paired (but not unpaired) males of both of these albatross species use rape as a supplemental reproductive strategy. Between species differences in size, timing of laying, and aggressiveness suggest that Black-footed Albatrosses should be more successful than Laysan Albatrosses in heteropspecific rape attempts, and male Black-footed Albatrosses have been observed attempting to force copulations on female Laysan Albatrosses. Nuclear markers showed that the six hybrids we studied were F1s and mitochondrial markers showed that male Black-footed Albatrosses sired all six hybrids. Long-term gene exchange between these species has been from Black-footed Albatrosses into Laysan Albatrosses, suggesting that the siring asymmetry found in our hybrids has long persisted. If hybrids are sired in heterospecific rapes, they presumably would be raised and sexually imprinted on Laysan Albatrosses, and two unmated hybrids in a previous study courted only Laysan Albatrosses.

3.
J Mol Evol ; 57(6): 681-93, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14745537

ABSTRACT

Patterns of DNA sequence variation can be used to learn about mechanisms of organismal evolution, but only if mechanisms of sequence evolution are well understood. Although theories of molecular evolution are well developed, few empirical studies have addressed patterns and mechanisms of sequence evolution in nuclear genes within species. In the present study, we compared DNA sequences among three loci with different evolutionary constraints to determine the influences of effective population size, balancing selection, and linkage on intraspecific patterns of sequence variation. Specifically, we assessed the degree and nature of polymorphism in a 307-base pair (bp) fragment of the mitochondrial cytochrome b gene, intron VIII of the gene for alpha-enolase (a presumably neutral nuclear gene), and an approximately 600-bp fragment of an MHC class II B gene, including 155 bp of the hypervariable peptide binding region (a nuclear locus thought to be under balancing selection) for least and crested auklets (Aethia pusilla and A. cristatella; Charadriiformes: Alcidae). Transspecies polymorphism was found in both alpha-enolase and the MHC but not cytochrome b and, given estimates of effective population size, probably represents retained ancestral variation. Biases in nucleotide composition suggested that mutational bias, tRNA availability, and the secondary structure of mRNA and/or DNA may influence base usage. Several lines of evidence indicated that balancing selection may be acting on the MHC II B exon 2. However, no evidence of balancing selection was observed in the intron and exon sequences immediately downstream of MHC II B exon 2.


Subject(s)
Birds/genetics , DNA, Mitochondrial/genetics , Genes, MHC Class II/genetics , Phosphopyruvate Hydratase/genetics , Animals , Base Sequence , Birds/classification , Cytochromes b/genetics , DNA/chemistry , DNA/genetics , Evolution, Molecular , Genetic Variation , Models, Genetic , Molecular Sequence Data , Polymorphism, Single-Stranded Conformational , Selection, Genetic , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...