Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 14(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36287941

ABSTRACT

Aflatoxin B1 is a potent human carcinogen produced by several species of Aspergillus mainly found on nuts and maize. Exposures in parts of Africa, Latin America and Asia can be at multiples, sometimes orders of magnitude above tolerable daily levels. Although human exposure to aflatoxin can be estimated by analysis of the diet, only determination of the serum albumin aflatoxin adduct provides a health-relevant exposure measure. The lack of a reference serum limits interlaboratory method validation and data comparisons. In this study, we synthetically produced AFB1-dialdehyde and covalently coupled it to serum albumin in human serum. This synthetic produced aflatoxin-serum reference material was used in conjunction with isotopically labelled internal standards to evaluate sample digestion methods. This showed using sufficient Pronase in the digestion step was critical to ensure complete proteolytic digestion, which occurs within 4 h. Increasing the digestion temperature from 37 °C to 50 °C also provided a benefit to the overall analysis. In addition, the use of dried blood spots and Volumetric Absorptive Microsampling (VAMS) were investigated showing samples stored with VAMS produced equivalent results to serum samples.


Subject(s)
Aflatoxin B1 , Aflatoxins , Humans , Aflatoxin B1/analysis , Lysine , Public Health , Pronase , Aflatoxins/analysis , Carcinogens , Serum Albumin
2.
Toxins (Basel) ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: mdl-35051035

ABSTRACT

Aflatoxins B1 (AFB1) and G1 (AFG1) are carcinogenic mycotoxins that contaminate crops such as maize and groundnuts worldwide. The broadly accepted method to assess chronic human aflatoxin exposure is by quantifying the amount of aflatoxin adducted to human serum albumin. This has been reported using ELISA, HPLC, or LC-MS/MS to measure the amount of AFB1-lysine released after proteolysis of serum albumin. LC-MS/MS is the most accurate method but requires both isotopically labelled and unlabelled AFB1-lysine standards, which are not commercially available. In this work, we report a simplified synthetic route to produce unlabelled, deuterated and 13C6 15N2 labelled aflatoxin B1-lysine and for the first-time aflatoxin G1-lysine. Additionally, we report on the stability of these compounds during storage. This simplified synthetic approach will make the production of these important standards more feasible for laboratories performing aflatoxin exposure studies.


Subject(s)
Aflatoxin B1/chemical synthesis , Aflatoxins/chemical synthesis , Lysine/chemistry , Mycotoxins/chemical synthesis , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Tandem Mass Spectrometry
3.
J Ginseng Res ; 45(1): 156-162, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437167

ABSTRACT

BACKGROUND: It is estimated that 20-30% of ginseng crops in Canada are lost to root rot each harvest. This disease is commonly caused by fungal infection with Ilyonectria, previously known as Cylindrocarpon. Previous reports have linked the virulence of fungal disease to the production of siderophores, a class of small-molecule iron chelators. However, these siderophores have not been identified in Ilyonectria. METHODS: High-resolution LC-MS/MS was used to screen Ilyonectria and Cylindrocarpon strain extracts for secondary metabolite production. These strains were also tested for their ability to cause root rot in American ginseng and categorized as virulent or avirulent. The differences in detected metabolites between the virulent and avirulent strains were compared with a focus on siderophores. RESULTS: For the first time, a siderophore N,N',N″-triacetylfusarinine C (TAFC) has been identified in Ilyonectria, and it appears to be linked to disease virulence. Siderophore production was suppressed as the concentration of iron increased, which is in agreement with previous reports. CONCLUSION: The identification of the siderophore produced by Ilyonectria gives us further insight into the root rot disease that heavily affects ginseng crop yields. This research identifies a molecular pathway previously unknown for ginseng root rot and could lead to new disease treatment options.

4.
Food Chem Toxicol ; 147: 111854, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33197547

ABSTRACT

Of the five agriculturally important mycotoxins, AFB1, FB1, DON, ZEA and OTA, a well-characterized biomarker of exposure in blood is only available for aflatoxin. Working with a population of 139 women of childbearing age in Rwanda, we undertook a comprehensive assessment of their dietary mycotoxin exposure. Using high-resolution LC-MS/MS with stable isotope dilution analysis, the albumin-aflatoxin adduct was quantitated in plasma. Similarly, AFM1, AFB1, AFG1, FB1 and B2, OTA, zearalenone, α-zearalenol, deoxynivalenol, deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were quantitated in urine. AFB1-Lys was detected in plasma from 81% of the women, indicative of exposures 1-2 orders of magnitude above current guidance. Zearalenone and/or α-zearalenol were detected in the urine of 61% of the women, the majority of whom had estimated exposures 2-5 times the PMTDI, with one third more than an order of magnitude above. Urinary deoxynivalenol or the two glucuronide conjugates were found in 77% of the participants. Of these, 60% were below the PMTDI, 28% were twice and 12% were >10x the PMTDI. Fumonisin B1 (30%) and ochratoxin A (71%) were also detected in urine. Exposures observed in these Rwandan women raise serious food safety concerns and highlight the need for authorities to help manage multiple mycotoxins in their diet.


Subject(s)
Food Contamination , Mycotoxins/toxicity , Pregnancy Complications/chemically induced , Adult , Biomarkers/blood , Female , Humans , Mycotoxins/blood , Mycotoxins/chemistry , Pregnancy , Pregnancy Complications/prevention & control , Rwanda
5.
Metabolites ; 10(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947697

ABSTRACT

Ginseng root is an economically valuable crop in Canada at high risk of yield loss caused by the pathogenic fungus Ilyonectria mors-panacis, formerly known as Cylindrocarpon destructans. While this pathogen has been well-characterized from morphological and genetic perspectives, little is known about the secondary metabolites it produces and their role in pathogenicity. We used an untargeted tandem liquid chromatography-mass spectrometry (LC-MS)-based approach paired with global natural products social molecular networking (GNPS) to compare the metabolite profiles of virulent and avirulent Ilyonectria strains. The ethyl acetate extracts of 22 I. mors-panacis strains and closely related species were analyzed by LC-MS/MS. Principal component analysis of LC-MS features resulted in two distinct groups, which corresponded to virulent and avirulent Ilyonectria strains. Virulent strains produced more types of compounds than the avirulent strains. The previously reported I. mors-panacis antifungal compound radicicol was present. Additionally, a number of related resorcyclic acid lactones (RALs) were putatively identified, namely pochonins and several additional derivatives of radicicol. Pochonins have not been previously reported in Ilyonectria spp. and have documented antimicrobial activity. This research contributes to our understanding of I. mors-panacis natural products and its pathogenic relationship with ginseng.

6.
Rapid Commun Mass Spectrom ; 33(1): 133-139, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30325552

ABSTRACT

RATIONALE: Microbial natural products are often biosynthesized as classes of structurally related compounds that have similar tandem mass spectrometry (MS/MS) fragmentation patterns. Mining MS/MS datasets for precursor ions that share diagnostic or common features enables entire chemical classes to be identified, including novel derivatives that have previously been unreported. Analytical data analysis tools that can facilitate a class-targeted approach to rapidly dereplicate known compounds and identify structural variants within complex matrices would be useful for the discovery of new natural products. METHODS: A diagnostic fragmentation filtering (DFF) module was developed for MZmine to enable the efficient screening of MS/MS datasets for class-specific product ions(s) and/or neutral loss(es). This approach was applied to series of the structurally related chaetoglobosin and cytochalasin classes of compounds. These were identified from the culture filtrates of three fungal genera: Chaetomium globosum, a putative new species of Penicillium (called here P. cf. discolor: closely related to P. discolor), and Xylaria sp. Extracts were subjected to LC/MS/MS analysis under positive electrospray ionization and operating in a data-dependent acquisition mode, performed using a Thermo Q-Exactive mass spectrometer. All MS/MS datasets were processed using the DFF module and screened for diagnostic product ions at m/z 130.0648 and 185.0704 for chaetoglobosins, and m/z 120.0808 and 146.0598 for cytochalasins. RESULTS: Extracts of C. globosum and P. cf. discolor strains revealed different mixtures of chaetoglobosins, whereas the Xylaria sp. produced only cytochalasins; none of the strains studied produced both classes of compounds. The dominant chaetoglobosins produced by both C. globosum and P. cf. discolor were chaetoglobosins A, C, and F. Tetrahydrochaetoglobosin A was identified from P. cf. discolor extracts and is reported here for the first time as a natural product. The major cytochalasins produced by the Xylaria sp. were cytochalasin D and epoxy cytochalasin D. A larger unknown "cytochalasin-like" molecule with the molecular formula C38 H47 NO10 was detected from Xylaria sp. culture filtrate extracts and is a current target for isolation and structural characterization. CONCLUSIONS: DFF is an effective LC/MS data analysis approach for rapidly identifying entire classes of compounds from complex mixtures. DFF has proved useful in the identification of new natural products and allowing for their partial characterization without the need for isolation.


Subject(s)
Cytochalasins/chemistry , Drug Discovery/methods , Indole Alkaloids/chemistry , Software , Tandem Mass Spectrometry/methods , Chaetomium/chemistry , Chaetomium/metabolism , Chromatography, Liquid , Cytochalasins/analysis , Drug Evaluation, Preclinical/methods , Fermentation , Indole Alkaloids/analysis , Metabolomics/methods , Penicillium/chemistry , Penicillium/metabolism , Xylariales/chemistry , Xylariales/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...