Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 39(2): 342-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26573891

ABSTRACT

The lack of a biomarker for the consumption of cranberries has confounded the interpretation of several studies investigating the effect of cranberry products, especially juices, on health outcomes. The objectives of this pilot study were to develop a liquid chromatography tandem mass spectrometric method for the quantification of the proanthocyanin dimer A-2 in human urine and validate urinary proanthocyanin dimer A-2 as a biomarker of cranberry intake. Five healthy, nonsmoking, premenopausal women (20-30 years of age, body mass index: 18.5-25 kg/m(2) ) were assigned to consume a cranberry beverage containing 140 mg proanthocyanin and 35 kilocalories at 237 mL/day, according to a weekly dosing schedule for 7 weeks. Eleven 24 h and morning spot urine samples each were collected from each subject. A reliable, sensitive method for the detection of proanthocyanin dimer A-2 in urine using liquid chromatography with tandem mass spectrometry was developed with a limit of quantitation of 0.25 ng/mL and a relative standard deviation of 7.26%, precision of 5.7%, and accuracy of 91.7%. While proanthocyanin dimer A-2 was quantifiable in urine, it did not appear to be excreted in a concentration that corresponded to the dosing schedule and intake of cranberry juice.


Subject(s)
Chromatography, Liquid/methods , Plant Extracts/urine , Proanthocyanidins/urine , Tandem Mass Spectrometry/methods , Vaccinium macrocarpon/metabolism , Adult , Biomarkers/chemistry , Biomarkers/metabolism , Biomarkers/urine , Dimerization , Female , Humans , Male , Plant Extracts/chemistry , Plant Extracts/metabolism , Proanthocyanidins/chemistry , Proanthocyanidins/metabolism , Young Adult
2.
DNA Repair (Amst) ; 12(9): 713-22, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23791649

ABSTRACT

Y-family DNA polymerases bypass DNA adducts in a process known as translesion synthesis (TLS). Y-family polymerases make contacts with the minor groove side of the DNA substrate at the nascent base pair. The Y-family polymerases also contact the DNA major groove via the unique little finger domain, but they generally lack contacts with the major groove at the nascent base pair. Escherichia coli DinB efficiently and accurately copies certain minor groove guanosine adducts. In contrast, we previously showed that the presence in the DNA template of the major groove-modified base 1,3-diaza-2-oxophenothiazine (tC) inhibits the activity of E. coli DinB. Even when the DNA primer is extended up to three nucleotides beyond the site of the tC analog, DinB activity is strongly inhibited. These findings prompted us to investigate discrimination against other major groove modifications by DinB and its orthologs. We chose a set of pyrimidines and purines with modifications in the major groove and determined the activity of DinB and several orthologs with these substrates. DinB, human pol kappa, and Sulfolobus solfataricus Dpo4 show differing specificities for the major groove adducts pyrrolo-dC, dP, N(6)-furfuryl-dA, and etheno-dA. In general, DinB was least efficient for bypass of all of these major groove adducts, whereas Dpo4 was most efficient. DinB activity was essentially completely inhibited by the presence of etheno-dA, while pol kappa activity was strongly inhibited. All three of these DNA polymerases were able to bypass N(6)-furfuryl-dA with modest efficiency, with DinB being the least efficient. We also determined that the R35A variant of DinB enhances bypass of N(6)-furfuryl-dA but not etheno-dA. In sum, we find that whereas DinB is specific for bypass of minor groove adducts, it is specifically inhibited by major groove DNA modifications.


Subject(s)
DNA Adducts/chemistry , Escherichia coli Proteins/chemistry , Base Sequence , Catalytic Domain , DNA-Directed DNA Polymerase/chemistry , Escherichia coli/enzymology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/physiology , Humans , Kinetics , Models, Molecular , Mutation, Missense , Nucleic Acid Conformation , Nucleic Acid Synthesis Inhibitors , Substrate Specificity , Sulfolobus solfataricus/enzymology
3.
Environ Mol Mutagen ; 53(9): 766-76, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23034734

ABSTRACT

DinB is one of two Y family polymerases in E. coli and is involved in copying damaged DNA. DinB is specialized to bypass deoxyguanosine adducts that occur at the N(2) position, with its cognate lesion being the furfuryl adduct. Active site residues have been identified that make contact with the substrate and carry out deoxynucleotide triphosphate (dNTP) addition to the growing DNA strand. In DNA polymerases, these include negatively charged aspartate and glutamate residues (D8, D103, and E104 in E. coli DNA polymerase IV DinB). These residues position the essential magnesium ions correctly to facilitate nucleophilic attack by the primer hydroxyl group on the α-phosphate group of the incoming dNTP. To study the contribution of DinB residues to lesion bypass, the computational methods THEMATICS and POOL were employed. These methods correctly predict the known active site residues, as well as other residues known to be important for activity. In addition, these methods predict other residues involved in substrate binding as well as more remote residues. DinB variants with mutations at the predicted positions were constructed and assayed for bypass of the N(2) -furfuryl-dG lesion. We find a wide range of effects of predicted residues, including some mutations that abolish damage bypass. Moreover, most of the DinB variants constructed are unable to carry out the extension step of lesion bypass. The use of computational prediction methods represents another tool that will lead to a more complete understanding of translesion DNA synthesis.


Subject(s)
Amino Acids/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Base Sequence , Catalytic Domain , DNA Primers , Escherichia coli Proteins/chemistry , Models, Molecular
4.
J Nucleic Acids ; 2012: 530963, 2012.
Article in English | MEDLINE | ID: mdl-22720133

ABSTRACT

The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.

5.
Front Biosci (Landmark Ed) ; 16(8): 3164-82, 2011 06 01.
Article in English | MEDLINE | ID: mdl-21622227

ABSTRACT

DNA damage is ubiquitous, arising from both environmental and endogenous sources. All organisms have evolved multiple pathways to respond to DNA damage and maintain genomic integrity. Escherichia coli possesses two DNA polymerases, pol IV and pol V, that are members of the Y family. These polymerases are characterized by their specialized ability to copy damaged DNA as well as their relatively low fidelity on undamaged DNA. Pol IV and pol V are regulated by the SOS response to DNA damage and by their multiple interactions with other proteins. These two Y family DNA polymerases copy DNA damaged by distinct agents. Pol IV is capable of replicating DNA containing N(2)-dG adducts, while pol V bypasses abasic sites and thymine-thymine dimers, which result from exposure to UV radiation. In addition to their roles in copying damaged DNA, the two Y family DNA polymerases in E. coli act in regulation of DNA replication and contribute to bacterial mutagenesis in response to cellular stress.


Subject(s)
DNA Polymerase beta/chemistry , DNA Polymerase beta/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , DNA Damage , DNA Polymerase beta/genetics , DNA Replication , DNA-Directed DNA Polymerase/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genes, Bacterial , Models, Biological , Models, Molecular , SOS Response, Genetics
6.
J Mol Biol ; 409(2): 89-100, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21477595

ABSTRACT

The cytosine analog 1,3-diaza-2-oxophenothiazine (tC) is a fluorescent nucleotide that forms Watson-Crick base pairs with dG. The Klenow fragment of DNA polymerase I (an A-family polymerase) can efficiently bypass tC on the template strand and incorporate deoxyribose-triphosphate-tC into the growing primer terminus. Y-family DNA polymerases are known for their ability to accommodate bulky lesions and modified bases and to replicate beyond such nonstandard DNA structures in a process known as translesion synthesis. We probed the ability of the Escherichia coli Y-family DNA polymerase DinB (Pol IV) to copy DNA containing tC and to incorporate tC into a growing DNA strand. DinB selectively adds dGTP across from tC in template DNA but cannot extend beyond the newly formed G:tC base pair. However, we find that DinB incorporates the tC deoxyribonucleotide triphosphate opposite template G and extends from tC. Therefore, DinB displays asymmetry in terms of its ability to discriminate against the modification of the DNA template compared to the incoming nucleotide. In addition, our finding that DinB (a lesion-bypass DNA polymerase) specifically discriminates against tC in the template strand may suggest that DinB discriminates against template modifications in the major groove of DNA.


Subject(s)
DNA/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Oxazines/metabolism , DNA/genetics , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...