Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 118(3): 1411-1418, 2021 03.
Article in English | MEDLINE | ID: mdl-33305827

ABSTRACT

Mineralized polymer scaffolds have proven to be effective biomaterials for inducing osteoinductivity in bone tissue engineering. Sequential mineralization is a promising technique for depositing minerals in three-dimensional (3D) scaffolds. Paper, which is made of cellulose fibers, can be used as a tissue scaffold due to its highly porous structure and flexibility, as well as its excellent ability to wick fluids and support the growth of bone cells. In this study, paper-based, mineralized scaffolds were fabricated using sequential mineralization. We conducted experiments with two groups of scaffolds based on different incubation times in the mineralization solutions (30 min and 24 h). Ten cycles of mineralization were performed for each group. We found that the mineral content increased as the cycle number increased and that the 24-h group scaffolds consistently had more mineralization than did the 30-min group scaffolds when measured at the same cycle number. A quantitative reverse transcription-polymerase chain reaction was performed for two osteogenic differentiation markers of the preosteoblasts that were grown on the mineralized paper scaffolds. The gene expression results for bone-specific markers revealed that the mineralized scaffolds were osteoinductive. Subcutaneous implantation of the scaffolds in rats demonstrated favorable biocompatibility, high vascularization, and non-immunogenicity in vivo. The overall results suggest that the sequentially mineralized paper scaffolds are promising materials for use in bone tissue engineering.


Subject(s)
Bone and Bones/metabolism , Osteogenesis , Paper , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Male , Rats , Rats, Wistar
2.
Bioengineering (Basel) ; 7(4)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092121

ABSTRACT

Mineralized biomaterials have been demonstrated to enhance bone regeneration compared to their non-mineralized analogs. As non-mineralized scaffolds do not perform as well as mineralized scaffolds in terms of their mechanical and surface properties, osteoconductivity and osteoinductivity, mineralization strategies are promising methods in the development of functional biomimetic bone scaffolds. In particular, the mineralization of three-dimensional (3D) scaffolds has become a promising approach for guided bone regeneration. In this paper, we review the major approaches used for mineralizing tissue engineering constructs. The resulting scaffolds provide minerals chemically similar to the inorganic component of natural bone, carbonated apatite, Ca5(PO4,CO3)3(OH). In addition, we discuss the characterization techniques that are used to characterize the mineralized scaffolds, such as the degree of mineralization, surface characteristics, mechanical properties of the scaffolds, and the chemical composition of the deposited minerals. In vitro cell culture studies show that the mineralized scaffolds are highly osteoinductive. We also summarize, based on literature examples, the applications of 3D mineralized constructs, as well as the rationale behind their use. The mineralized scaffolds have improved bone regeneration in animal models due to the enhanced mechanical properties and cell recruitment capability making them a preferable option for bone tissue engineering over non-mineralized scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL
...