Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Lasers Surg Med ; 56(4): 371-381, 2024 04.
Article in English | MEDLINE | ID: mdl-38563442

ABSTRACT

OBJECTIVES: To develop and practically test high-precision femtosecond laser ablation models for dental hard tissue that are useful for detailed planning of automated laser dental restorative treatment. METHODS: Analytical models are proposed, derived, and demonstrated for practical calculation of ablation rates, ablation efficiency and ablated morphology of human dental enamel and dentin using femtosecond lasers. The models assume an effective optical attenuation coefficient for the irradiated material. To achieve ablation, it is necessary for the local energy density of the attenuated pulse in the hard tissue to surpass a predefined threshold that signifies the minimum energy density required for material ionization. A 1029 nm, 40 W carbide 275 fs laser was used to ablate sliced adult human teeth and generate the data necessary for testing the models. The volume of material removed, and the shape of the ablated channel were measured using optical profilometry. RESULTS: The models fit with the measured ablation efficiency curve against laser fluence for both enamel and dentin, correctly capturing the fluence for optimum ablation and the volume of ablated material per pulse. The detailed shapes of a 400-micrometer wide channel and a single-pulse width channel are accurately predicted using the superposition of the analytical result for a single pulse. CONCLUSIONS: The findings have value for planning automated dental restorative treatment using femtosecond lasers. The measurements and analysis give estimates of the optical properties of enamel and dentin irradiated with an infrared femtosecond laser at above-threshold fluence and the proposed models give insight into the physics of femtosecond laser processing of dental hard tissue.


Subject(s)
Laser Therapy , Tooth , Humans , Dentin/surgery , Lasers , Light
2.
Respir Physiol Neurobiol ; 295: 103786, 2022 01.
Article in English | MEDLINE | ID: mdl-34508867

ABSTRACT

Genioglossus was stimulated intramuscularly to determine the effect of regional activation of the muscle on tongue movement in eight healthy adults. Stimulation at motor threshold was delivered with a needle electrode inserted to different depths in the anterior and posterior regions of genioglossus. The current amplitude that induced muscle contraction was ∼80% higher for anterior than posterior sites. Evoked tongue movements were determined from stimulus-triggered averages (150 pulses) of the outputs from an accelerometer fixed to the posterosuperior surface of the tongue. The median amplitude [95% confidence intervals] for the resultant acceleration was 0.0 m/s2 [0.0, 0.2] for anterior and 0.6 m/s2 [0.1, 2.8] for posterior sites. There was a positive relationship between acceleration amplitude and stimulation depth in the posterior of genioglossus (p < 0.001), but acceleration amplitude did not vary with stimulation depth in the anterior region (p = 0.83). This heterogeneity in acceleration responses between muscle regions may contribute to differences in collapsibility of the upper airway.


Subject(s)
Movement/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Respiration , Tongue/physiology , Adult , Electric Stimulation , Humans , Ultrasonography , Young Adult
3.
Respir Physiol Neurobiol ; 274: 103353, 2020 03.
Article in English | MEDLINE | ID: mdl-31760130

ABSTRACT

How the involuntary (bulbospinal) and voluntary (corticospinal) pathways interact in respiratory muscle control is not established. To determine the role of excitatory corticobulbar pathways in humans, studies typically compare electromyographic activity (EMG) or evoked responses in respiratory muscles during hypercapnic and voluntary tasks. Although ventilation is matched between tasks by having participants track signals of ventilation, these tasks may not result in matched respiratory muscle activity. The aim of this study was to describe respiratory muscle activity and ribcage and abdominal excursions during two different voluntary conditions, compared to hypercapnic hyperventilation. Ventilation was matched in the voluntary conditions via (i) a simple target of lung volume ('volume tracking') or (ii) targets of both ribcage and abdominal excursions, adjusted to end-expiratory lung volume in hypercapnic hyperventilation ('bands tracking'). Compared to hypercapnic hyperventilation, respiratory parameters such as tidal volume were similar, but the ratio of ribcage to abdominal excursion was higher for both voluntary tasks. Inspiratory scalene and parasternal intercostal muscle activity was higher in volume tracking, but diaphragm and abdominal muscle activity showed little to no change. There were no differences in muscle activity in bands tracking for any muscle, compared to hypercapnic hyperventilation. An elevated ratio of ribcage to abdominal excursion in the bands tracking task indicates that participants could not accurately match the targets in this condition. Inspiratory muscle activity is altered in some muscles in some voluntary tasks, compared to hypercapnia. Therefore, differences in muscle activity should be considered in interpretation of studies that use these protocols to investigate respiratory muscle control.


Subject(s)
Hypercapnia/physiopathology , Hyperventilation/physiopathology , Motor Activity/physiology , Respiration , Respiratory Muscles/physiology , Volition/physiology , Adult , Humans , Male , Middle Aged , Neural Pathways/physiology
4.
ACS Omega ; 4(17): 17487-17493, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31656920

ABSTRACT

Forming gas annealing is a common process step used to improve the performance of devices based on transition-metal dichalcogenides (TMDs). Here, the impact of forming gas anneal is investigated for PtSe2-based devices. A range of annealing temperatures (150, 250, and 350 °C) were used both in inert (0/100% H2/N2) and forming gas (5/95% H2/N2) environments to separate the contribution of temperature and ambient. The samples are electrically characterized by circular transfer length method structures, from which contact resistance and sheet resistance are analyzed. Ti and Ni are used as metal contacts. Ti does not react with PtSe2 at any given annealing step. In contrast to this, Ni reacts with PtSe2, resulting in a contact alloy formation. The results are supported by a combination of X-ray photoelectron spectroscopy, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and cross-sectional transmission electron microscopy. The work sheds light on the impact of forming gas annealing on TMD-metal interfaces, and on the TMD film itself, which could be of great interest to improve the contact resistance of TMD-based devices.

5.
ACS Appl Mater Interfaces ; 11(35): 32144-32150, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31416305

ABSTRACT

The unique properties of topological insulators such as Bi2Se3 are intriguing for their potential implementation in novel device architectures for low power and defect-tolerant logic and memory devices. Recent improvements in the synthesis of Bi2Se3 have positioned researchers to fabricate new devices to probe the limits of these materials. The fabrication of such devices, of course, requires etching of the topological insulator, in addition to other materials including gate oxides and contacts which may impact the topologically protected surface states. In this paper, we study the impact of He+ sputtering and inductively coupled plasma Cl2 and SF6 reactive etch chemistries on the physical, chemical, and electronic properties of Bi2Se3. Chemical analysis by X-ray photoelectron spectroscopy tracks changes in the surface chemistry and Fermi level, showing preferential removal of Se that results in vacancy-induced n-type doping. Chlorine-based chemistry successfully etches Bi2Se3 but with residual Se-Se bonding and interstitial Cl species remaining after the etch. The Se vacancies and residuals can be removed with postetch anneals in a Se environment, repairing Bi2Se3 nearly to the as-grown condition. Critically, in each of these cases, angle-resolved photoemission spectroscopy (ARPES) reveals that the topologically protected surface states remain even after inducing significant surface disorder and chemical changes, demonstrating that topological insulators are quite promising for defect-tolerant electronics. Changes to the ARPES intensity and momentum broadening of the surface states are discussed. Fluorine-based etching aggressively reacts with the film resulting in a relatively thick insulating film of thermodynamically favored BiF3 on the surface, prohibiting the use of SF6-based etching in Bi2Se3 processing.

6.
PLoS One ; 14(6): e0218553, 2019.
Article in English | MEDLINE | ID: mdl-31247034

ABSTRACT

A progressive decline in upper limb function is associated with ageing and disease. In this cross-sectional study we assessed the performance of 367 healthy individuals aged of 20 to 95 years across a battery of upper limb clinical tests, which we have termed the upper limb Physiological Profile Assessment (PPA). The upper limb PPA was designed to quantify the performance of the multiple physiological domains important for adequate function in the upper extremities. Included are tests of muscle strength, unilateral movement and dexterity, position sense, skin sensation, bimanual coordination, arm stability, along with a functional task. We report age and gender normative values for each test. Test-retest reliability ranged from good to excellent in all tests (intra-class correlation coefficients from 0.65 to 0.98) with the exception of position sense (0.31). Ten of the thirteen tests revealed differences in performance between males and females, twelve showed a decline in performance with increasing age, and eight discriminated between older people with and without upper limb functional impairment. Furthermore, most tests showed good external validity with respect to age, an upper limb functional test and self-reported function. This profiling approach provides a reference range for clinical groups with upper limb sensory and motor impairments and may assist in identifying undiagnosed deficits in the general population. Furthermore, the tests are sufficiently reliable to detect motor impairments in people with compromised upper limb function and evaluate the effectiveness of interventions.


Subject(s)
Aging/physiology , Upper Extremity/physiology , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Disability Evaluation , Female , Humans , Male , Middle Aged , Motor Skills/physiology , Muscle Strength/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Reference Values , Reproducibility of Results , Sensation/physiology , Sex Factors , Young Adult
7.
PLoS One ; 14(1): e0210911, 2019.
Article in English | MEDLINE | ID: mdl-30653568

ABSTRACT

Previous studies revealed that healthy individuals consistently misjudge the size and shape of their hidden hand during a localisation task. Specifically, they overestimate the width of their hand and underestimate the length of their fingers. This would also imply that the same individuals misjudge the actual location of at least some parts of their hand during the task. Therefore, the primary aim of the current study was to determine whether healthy individuals could accurately locate the actual position of their hand when hidden from view, and whether accuracy depends on the type of localisation task used, the orientation of the hidden hand, and whether the left or right hand is tested. Sixteen healthy right-handed participants performed a hand localisation task that involved both pointing to and verbally indicating the perceived position of landmarks on their hidden hand. Hand position was consistently misjudged as closer to the wrist (proximal bias) and, to a lesser extent, away from the thumb (ulnar bias). The magnitude of these biases depended on the localisation task (pointing vs. verbal), the orientation of the hand (straight vs. rotated), and the hand tested (left vs. right). Furthermore, the proximal location bias increased in size as the duration of the experiment increased, while the magnitude of ulnar bias remained stable through the experiment. Finally, the resultant maps of perceived hand location appear to replicate the previously reported overestimation of hand width and underestimation of finger length. Once again, the magnitude of these distortions is dependent on the task, orientation, and hand tested. These findings underscore the need to control and standardise each component of the hand localisation task in future studies.


Subject(s)
Hand , Orientation, Spatial/physiology , Proprioception/physiology , Space Perception/physiology , Acoustic Stimulation , Adult , Female , Fingers , Functional Laterality , Hand/anatomy & histology , Healthy Volunteers , Humans , Male , Middle Aged , Models, Psychological , Photic Stimulation , Young Adult
8.
Nanoscale ; 10(31): 15023-15034, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30052245

ABSTRACT

Two-dimensional materials have shown great promise for implementation in next-generation devices. However, controlling the film thickness during epitaxial growth remains elusive and must be fully understood before wide scale industrial application. Currently, uncontrolled multilayer growth is frequently observed, and not only does this growth mode contradict theoretical expectations, but it also breaks the inversion symmetry of the bulk crystal. In this work, a multiscale theoretical investigation aided by experimental evidence is carried out to identify the mechanism of such an unconventional, yet widely observed multilayer growth in the epitaxy of layered materials. This work reveals the subtle mechanistic similarities between multilayer concentric growth and spiral growth. Using the combination of experimental demonstration and simulations, this work presents an extended analysis of the driving forces behind this non-ideal growth mode, and the conditions that promote the formation of these defects. Our study shows that multilayer growth can be a result of both chalcogen deficiency and chalcogen excess: the former causes metal clustering as nucleation defects, and the latter generates in-domain step edges facilitating multilayer growth. Based on this fundamental understanding, our findings provide guidelines for the narrow window of growth conditions which enables large-area, layer-by-layer growth.

9.
ACS Nano ; 12(6): 6310-6318, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29874037

ABSTRACT

The topologically protected surface states of three-dimensional (3D) topological insulators have the potential to be transformative for high-performance logic and memory devices by exploiting their specific properties such as spin-polarized current transport and defect tolerance due to suppressed backscattering. However, topological insulator based devices have been underwhelming to date primarily due to the presence of parasitic issues. An important example is the challenge of suppressing bulk conduction in Bi2Se3 and achieving Fermi levels ( EF) that reside in between the bulk valence and conduction bands so that the topologically protected surface states dominate the transport. The overwhelming majority of the Bi2Se3 studies in the literature report strongly n-type materials with EF in the bulk conduction band due to the presence of a high concentration of selenium vacancies. In contrast, here we report the growth of near-intrinsic Bi2Se3 with a minimal Se vacancy concentration providing a Fermi level near midgap with no extrinsic counter-doping required. We also demonstrate the crucial ability to tune EF from below midgap into the upper half of the gap near the conduction band edge by controlling the Se vacancy concentration using post-growth anneals. Additionally, we demonstrate the ability to maintain this Fermi level control following the careful, low-temperature removal of a protective Se cap, which allows samples to be transported in air for device fabrication. Thus, we provide detailed guidance for EF control that will finally enable researchers to fabricate high-performance devices that take advantage of transport through the topologically protected surface states of Bi2Se3.

10.
J Physiol ; 596(11): 2121-2129, 2018 06.
Article in English | MEDLINE | ID: mdl-29604053

ABSTRACT

KEY POINTS: In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. ABSTRACT: In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the other conditions. A supplementary experiment showed the effect could be demonstrated if the muscle was conditioned by contraction at short lengths but not if the relaxed muscle was held at short lengths, confirming the role of muscle contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles.


Subject(s)
Isometric Contraction , Muscle Contraction , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology , Tendons/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male
11.
Soft Matter ; 13(47): 8964-8968, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29152630

ABSTRACT

Granular materials are an important physical realization of active matter. In vibration-fluidized granular matter, both diffusion and self-propulsion derive from the same collisional forcing, unlike many other active systems where there is a clean separation between the origin of single-particle mobility and the coupling to noise. Here we present experimental studies of single-particle motion in a vibrated granular monolayer, along with theoretical analysis that compares grain motion at short and long time scales to the assumptions and predictions, respectively, of the active Brownian particle (ABP) model. Our results show that despite the unique relation between noise and propulsion, a variety of granular particles are correctly described by the ABP model. Additionally, our scheme of analysis for validating the inputs and outputs of the model can be applied to other granular and non-granular active systems.

12.
Org Lett ; 19(10): 2533-2535, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28445072

ABSTRACT

A cascade reaction has been developed for the synthesis of lactonamycin. In this paper, we demonstrate that a transition-metal-free thermal ene-diyne cyclization can be used for the construction of the entire core of the antibiotic lactonamycin and anticancer agent lactonamycin Z.

13.
Cognition ; 154: 118-129, 2016 09.
Article in English | MEDLINE | ID: mdl-27267350

ABSTRACT

Psychological characterisation of sensory systems often focusses on minimal units of perception, such as thresholds, acuity, selectivity and precision. Research on how these units are aggregated to create integrated, synthetic experiences is rarer. We investigated mechanisms of somatosensory integration by asking volunteers to judge the total intensity of stimuli delivered to two fingers simultaneously. Across four experiments, covering physiological pathways for tactile, cold and warm stimuli, we found that judgements of total intensity were particularly poor when the two simultaneous stimuli had different intensities. Total intensity of discrepant stimuli was systematically overestimated. This bias was absent when the two stimulated digits were on different hands. Taken together, our results showed that the weaker stimulus of a discrepant pair was not extinguished, but contributed less to the perception of the total than the stronger stimulus. Thus, perception of somatosensory totals is biased towards the most salient element. 'Peak' biases in human judgements are well-known, particularly in affective experience. We show that a similar mechanism also influences sensory experience.


Subject(s)
Judgment , Touch Perception , Adolescent , Adult , Cold Temperature , Discrimination, Psychological , Electric Stimulation , Female , Fingers , Hot Temperature , Humans , Male , Pain Threshold , Physical Stimulation , Sensory Thresholds , Young Adult
14.
Exp Brain Res ; 233(6): 1761-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25788010

ABSTRACT

The brain needs information about the size of the body to control our interactions with the environment. No receptor signals this information directly; the brain must determine body size from multiple sensory inputs and then store this information. This process is poorly understood, but somatosensory information is thought to play a role. In particular, anaesthetising a body part has been reported to make it feel bigger. Here, we report the first study to measure whether changes in body size following anaesthesia are uniform across dimensions (e.g. width and length). We blocked the digital nerves of ten human subjects with a clinical dose of local anaesthetic (1 % lignocaine) and again in separate sessions with a weaker dose (0.25 % lignocaine) and a saline control. Subjects reported the perceived size of their index finger by selecting templates from a set that varied in size and aspect ratio. We also measured changes in sensory signals that might contribute to the anaesthetic-induced changes using quantitative sensory testing. Subjects perceived their finger to be up to 32 % wider during anaesthesia when compared to during a saline control condition. However, changes in perceived length of the finger were much smaller (<5 %). Previous studies have shown a change in perceived body size with anaesthesia, but have assumed that the aspect ratio is preserved. Our data show that this is not the case. We suggest that nonuniform changes in perceived body size might be due to the brain increasing the body's perimeter to protect it from further injury.


Subject(s)
Anesthesia , Fingers/innervation , Fingers/physiology , Pain Threshold/physiology , Proprioception/physiology , Adult , Analysis of Variance , Anesthetics, Local/pharmacology , Dose-Response Relationship, Drug , Female , Humans , Lidocaine/pharmacology , Male , Pain/chemically induced , Pain/physiopathology , Pain Threshold/drug effects , Proprioception/drug effects , Sensation/drug effects , Sensation/physiology , Young Adult
15.
J Physiol ; 591(23): 6103-14, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24099798

ABSTRACT

Recent studies have suggested that centrally generated motor commands contribute to the perception of position and movement at the wrist, but not at the elbow. Because the wrist and elbow experiments used different methods, this study was designed to resolve the discrepancy. Two methods were used to test both the elbow and wrist (20 subjects each). For the wrist, subjects sat with their right arm strapped to a device that restricted movement to the wrist. Before each test, voluntary contraction of wrist flexor or extensor muscles controlled for muscle spindle thixotropy. After relaxation, the wrist was moved to a test angle. Position was indicated either with a pointer, or by matching with the contralateral wrist, under two conditions: when the reference wrist was relaxed or when its muscles were contracted isometrically (30% maximum). The elbow experiment used the same design to measure position sense in the passive elbow and with elbow muscles contracting (30% maximum). At the wrist when using a pointer, muscle contraction altered significantly the perceived wrist angle in the direction of contraction by 7 deg [3 deg, 12 deg] (mean [95% confidence interval]) with a flexor contraction and 8 deg [4 deg, 12 deg] with an extensor contraction. Similarly, in the wrist matching task, there was a change of 13 deg [9 deg, 16 deg] with a flexor contraction and 4 deg [1 deg, 8 deg] with an extensor contraction. In contrast, contraction of elbow flexors or extensors did not alter significantly the perceived position of the elbow, compared with rest. The contribution of central commands to position sense differs between the elbow and the wrist.


Subject(s)
Elbow Joint/physiology , Muscle, Skeletal/physiology , Proprioception/physiology , Wrist Joint/physiology , Adult , Female , Humans , Male , Muscle Contraction , Young Adult
16.
J Physiol ; 591(22): 5661-70, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24060991

ABSTRACT

Body 'ownership' defines which things belong to us and can be manipulated by signals from cutaneous or muscle receptors. Whether signals from muscle proprioceptors on their own influence perceived ownership is unknown. We used finger-joint movement to induce illusory ownership of an artificial finger without vision. We coupled the subject's index finger to an artificial finger 12 cm above it. The experimenter held the subject's other index finger and thumb on the artificial finger and passively moved them congruently or incongruently for 3 min with the index finger and the grasping index finger and thumb intact or anaesthetised. When intact, congruent movement (19 subjects) reduced perceived vertical distance between index fingers to 1.0 (0.0, 2.0) cm [median (IQR)] from 3.0 (3.0, 4.0) cm with incongruent movement (P < 0.01). Simply grasping the artificial finger reduced perceived spacing between the grasping and test index fingers from 6.0 (5.0, 9.0) cm to 3.0 (3.0, 6.0) cm (P < 0.01), a new grasp illusion. Digital anaesthesia eliminated this grasp effect, after which congruent movement still reduced the perceived spacing between the index fingers to 1.0 (0.0, 2.75) cm compared to 4.0 (3.25, 6.0) cm with incongruent movement (P < 0.001). Subjects more strongly agreed that they were holding their own finger after congruent but not incongruent movement (P < 0.01). We propose that the brain generates possible scenarios and tests them against available sensory information. This process can function without vision or motor commands, and with only one channel of somatic information.


Subject(s)
Fingers/physiology , Illusions/physiology , Proprioception/physiology , Adult , Female , Hand Strength/physiology , Humans , Male , Middle Aged , Movement/physiology , Ownership , Psychomotor Performance/physiology , Young Adult
17.
Org Lett ; 13(15): 3834-6, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21699250

ABSTRACT

A reaction of 2-hydroxy-2-methylbutan-3-one with sodium hydride in the presence or absence of ethyl formate after acid workup gave the spirocyclic ether 3.


Subject(s)
Ether/chemistry , Spiro Compounds/chemical synthesis , Crystallography, X-Ray , Cyclization , Models, Molecular , Molecular Structure
18.
J Physiol ; 589(Pt 12): 3009-21, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21521765

ABSTRACT

The sense of body ownership, knowledge that parts of our body 'belong' to us, is presumably developed using sensory information. Cutaneous signals seem ideal for this and can modify the sense of ownership. For example, an illusion of ownership over an artificial rubber hand can be induced by synchronously stroking both the subject's hidden hand and a visible artificial hand. Like cutaneous signals, proprioceptive signals (e.g. frommuscle receptors) exclusively signal events occurring in the body, but the influence of proprioceptors on the sense of body ownership is not known. We developed a technique to generate an illusion of ownership over an artificial plastic finger, using movement at the proximal interphalangeal joint as the stimulus. We then examined this illusion in 20 subjects when their index finger was intact and when the cutaneous and joint afferents from the finger had been blocked by local anaesthesia of the digital nerves. Subjects still experienced an illusion of ownership, induced by movement, over the plastic finger when the digital nerves were blocked. This shows that local cutaneous signals are not essential for the illusion and that inputs arising proximally, presumably from receptors in muscles which move the finger, can influence the sense of body ownership. Contrary to other studies, we found no evidence that voluntary movements induce stronger illusions of body ownership than those induced by passive movement. It seems that the congruence of sensory stimuli ismore important to establish body ownership than the presence of multiple sensory signals.


Subject(s)
Body Image , Fingers/physiology , Illusions/physiology , Proprioception/physiology , Adult , Female , Humans , Middle Aged , Orientation/physiology , Young Adult
19.
J Physiol ; 589(Pt 3): 547-57, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21098006

ABSTRACT

If a weight is applied to a finger and the subject asked to produce the same force, the subject generates a force larger than the weight. That is, subjects overestimate the force applied by an external target when matching it. Details of this force overestimation are not well understood. We show that subjects overestimate small target weights, but not larger ones. Furthermore we show for the first time that the force overestimation consists of two components. The first component is a constant. The second component depends on the precise magnitude of the weight and is only present when subjects hold the target weight against gravity. We suggest that the two components are generated in different phases of the force-matching task, are due to different processes, and must have an influence on all proprioceptive judgements of force.


Subject(s)
Fingers/physiology , Muscle, Skeletal/physiology , Proprioception/physiology , Weight Perception/physiology , Adult , Female , Fingers/innervation , Functional Laterality/physiology , Humans , Lidocaine/pharmacology , Male , Muscle Contraction/physiology , Muscle, Skeletal/innervation , Proprioception/drug effects , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Skin/drug effects , Skin/innervation , Weight Perception/drug effects
20.
J Physiol ; 588(Pt 8): 1269-80, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20194129

ABSTRACT

The senses of limb movement and position are critical for accurate control of movement. Recent studies show that central signals of motor command contribute to the sense of limb position but it is not clear whether such signals influence the distinctly different sense of limb movement. Nine subjects participated in two experiments in which we inflated a cuff around their upper arm to produce an ischaemic block, paralysing and anaesthetising the forearm, wrist and hand. This produces an experimental phantom wrist and hand. With their arm hidden from view subjects were asked to make voluntary efforts with their blocked wrist. In the first experiment, efforts were 20 and 40% of maximum and were 2 and 4 s in duration. The second experiment used 1 and 5 s efforts of 5 and 50% of maximum. Subjects signalled perceived movements of their phantom wrist using a pointer. All subjects reported clear perceptions of movement of their phantom hand for all levels and durations of effort. On average, subjects perceived their phantom wrist to move between 16.4 +/- 3.3 deg (mean +/- 95% confidence interval (CI)) and 30.2 +/- 5.4 deg in the first experiment and between 10.3 +/- 3.5 and 38.6 +/- 6.7 deg in the second. The velocity of the movements and total displacement of the phantom graded with the level of effort, and the total displacement also graded with duration. Hence, we have shown that motor command signals have a novel proprioceptive role in the perception of movement of human joints.


Subject(s)
Hand/physiology , Illusions/physiology , Motor Activity/physiology , Movement/physiology , Perception/physiology , Phantom Limb/physiopathology , Adult , Female , Humans , Illusions/psychology , Male , Middle Aged , Paralysis/physiopathology , Paralysis/psychology , Phantom Limb/psychology , Physical Exertion/physiology , Proprioception/physiology , Signal Transduction/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...