Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 10(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38249008

ABSTRACT

Few-shot learning aims to identify unseen classes with limited labelled data. Recent few-shot learning techniques have shown success in generalizing to unseen classes; however, the performance of these techniques has also been shown to degrade when tested on an out-of-domain setting. Previous work, additionally, has also demonstrated increasing reliance on supervised finetuning in an off-line or online capacity. This paper proposes a novel, fully self-supervised few-shot learning technique (FSS) that utilizes a vision transformer and masked autoencoder. The proposed technique can generalize to out-of-domain classes by finetuning the model in a fully self-supervised method for each episode. We evaluate the proposed technique using three datasets (all out-of-domain). As such, our results show that FSS has an accuracy gain of 1.05%, 0.12%, and 1.28% on the ISIC, EuroSat, and BCCD datasets, respectively, without the use of supervised training.

2.
IEEE Trans Image Process ; 32: 4907-4920, 2023.
Article in English | MEDLINE | ID: mdl-37616141

ABSTRACT

In few-shot classification, performing well on a testing dataset is a challenging task due to the restricted amount of labelled data available and the unknown distribution. Many previously proposed techniques rely on prototypical representations of the support set in order to classify a query set. Although this approach works well with a large, in-domain support set, accuracy suffers when transitioning to an out-of-domain setting, especially when using small support sets. To address out-of-domain performance degradation with small support sets, we propose Masked Embedding Modeling for Few-Shot Learning (MEM-FS), a novel, self-supervised, generative technique that reinforces few-shot-classification accuracy for a prototypical backbone model. MEM-FS leverages the data completion capabilities of a masked autoencoder to expand a given embedded support set. To further increase out-of-domain performance, we also introduce Rapid Domain Adjustment (RDA), a novel, self-supervised process for quickly conditioning MEM-FS to a new domain. We show that masked support embeddings generated by MEM-FS+RDA can significantly improve backbone performance on both out-of-domain and in-domain datasets. Our experiments demonstrate that applying the proposed technique to an inductive classifier achieves state-of-the-art performance on mini-imagenet, the CVPR L2ID Classification Challenge, and a newly proposed dataset, IKEA-FS. We provide code for this work at https://github.com/Brikwerk/MEM-FS.

3.
Sci Rep ; 12(1): 2924, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190567

ABSTRACT

Classifying and analyzing human cells is a lengthy procedure, often involving a trained professional. In an attempt to expedite this process, an active area of research involves automating cell classification through use of deep learning-based techniques. In practice, a large amount of data is required to accurately train these deep learning models. However, due to the sparse human cell datasets currently available, the performance of these models is typically low. This study investigates the feasibility of using few-shot learning-based techniques to mitigate the data requirements for accurate training. The study is comprised of three parts: First, current state-of-the-art few-shot learning techniques are evaluated on human cell classification. The selected techniques are trained on a non-medical dataset and then tested on two out-of-domain, human cell datasets. The results indicate that, overall, the test accuracy of state-of-the-art techniques decreased by at least 30% when transitioning from a non-medical dataset to a medical dataset. Reptile and EPNet were the top performing techniques tested on the BCCD dataset and HEp-2 dataset respectively. Second, this study evaluates the potential benefits, if any, to varying the backbone architecture and training schemes in current state-of-the-art few-shot learning techniques when used in human cell classification. To this end, the best technique identified in the first part of this study, EPNet, is used for experimentation. In particular, the study used 6 different network backbones, 5 data augmentation methodologies, and 2 model training schemes. Even with these additions, the overall test accuracy of EPNet decreased from 88.66% on non-medical datasets to 44.13% at best on the medical datasets. Third, this study presents future directions for using few-shot learning in human cell classification. In general, few-shot learning in its current state performs poorly on human cell classification. The study proves that attempts to modify existing network architectures are not effective and concludes that future research effort should be focused on improving robustness towards out-of-domain testing using optimization-based or self-supervised few-shot learning techniques.


Subject(s)
Cells/classification , Cytological Techniques/methods , Datasets as Topic , Deep Learning , Feasibility Studies , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...