Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230198, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38768205

ABSTRACT

It has recently become clear that some language-specific traits previously thought to be unique to humans (such as the capacity to combine sounds) are widespread in the animal kingdom. Despite the increase in studies documenting the presence of call combinations in non-human animals, factors promoting this vocal trait are unclear. One leading hypothesis proposes that communicative complexity co-evolved with social complexity owing to the need to transmit a diversity of information to a wider range of social partners. The Western Australian magpie (Gymnorhina tibicen dorsalis) provides a unique model to investigate this proposed link because it is a group-living, vocal learning species that is capable of multi-level combinatoriality (independently produced calls contain vocal segments and comprise combinations). Here, we compare variations in the production of call combinations across magpie groups ranging in size from 2 to 11 birds. We found that callers in larger groups give call combinations: (i) in greater diversity and (ii) more frequently than callers in smaller groups. Significantly, these observations support the hypothesis that combinatorial complexity may be related to social complexity in an open-ended vocal learner, providing an important step in understanding the role that sociality may have played in the development of vocal combinatorial complexity. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Subject(s)
Vocalization, Animal , Animals , Western Australia , Social Environment , Social Behavior , Male , Passeriformes/physiology , Female , Songbirds/physiology
2.
J R Soc Interface ; 20(199): 20220679, 2023 02.
Article in English | MEDLINE | ID: mdl-36722171

ABSTRACT

Comparative studies conducted over the past few decades have provided important insights into the capacity for animals to combine vocal segments at either one of two levels: within- or between-calls. There remains, however, a distinct gap in knowledge as to whether animal combinatoriality can extend beyond one level. Investigating this requires a comprehensive analysis of the combinatorial features characterizing a species' vocal system. Here, we used a nonlinear dimensionality reduction analysis and sequential transition analysis to quantitatively describe the non-song combinatorial repertoire of the Western Australian magpie (Gymnorhina tibicen dorsalis). We found that (i) magpies recombine four distinct acoustic segments to create a larger number of calls, and (ii) the resultant calls are further combined into larger call combinations. Our work demonstrates two levels in the combining of magpie vocal units. These results are incongruous with the notion that a capacity for multi-level combinatoriality is unique to human language, wherein the combining of meaningless sounds and meaningful words interactively occurs across different combinatorial levels. Our study thus provides novel insights into the combinatorial capacities of a non-human species, adding to the growing evidence of analogues of language-specific traits present in the animal kingdom.


Subject(s)
Knowledge , Language , Animals , Australia , Phenotype , Sound
SELECTION OF CITATIONS
SEARCH DETAIL
...