Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Genome Announc ; 1(2): e0008513, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23516212

ABSTRACT

We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.

2.
Genome Announc ; 1(2): e0010313, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23516220

ABSTRACT

Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.

3.
Genome Announc ; 1(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-23469353

ABSTRACT

The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens.

4.
J Bacteriol ; 193(6): 1483-4, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21216991

ABSTRACT

The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Gram-Positive Bacteria/genetics , Genetic Variation , Glycoside Hydrolases/genetics , Membrane Transport Proteins/genetics , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...